4,948 research outputs found

    Quasi-cluster algebras from non-orientable surfaces

    Full text link
    With any non necessarily orientable unpunctured marked surface (S,M) we associate a commutative algebra, called quasi-cluster algebra, equipped with a distinguished set of generators, called quasi-cluster variables, in bijection with the set of arcs and one-sided simple closed curves in (S,M). Quasi-cluster variables are naturally gathered into possibly overlapping sets of fixed cardinality, called quasi-clusters, corresponding to maximal non-intersecting families of arcs and one-sided simple closed curves in (S,M). If the surface S is orientable, then the quasi-cluster algebra is the cluster algebra associated with the marked surface (S,M) in the sense of Fomin, Shapiro and Thurston. We classify quasi-cluster algebras with finitely many quasi-cluster variables and prove that for these quasi-cluster algebras, quasi-cluster monomials form a linear basis. Finally, we attach to (S,M) a family of discrete integrable systems satisfied by quasi-cluster variables associated to arcs in the quasi-cluster algebra and we prove that solutions of these systems can be expressed in terms of cluster variables of type A.Comment: 38 pages, 14 figure

    Hypothesis on the Nature of Time

    Full text link
    We present numerical evidence that fictitious diffusing particles in the causal dynamical triangulation (CDT) approach to quantum gravity exceed the speed of light on small distance scales. We argue this superluminal behaviour is responsible for the appearance of dimensional reduction in the spectral dimension. By axiomatically enforcing a scale invariant speed of light we show that time must dilate as a function of relative scale, just as it does as a function of relative velocity. By calculating the Hausdorff dimension of CDT diffusion paths we present a seemingly equivalent dual description in terms of a scale dependent Wick rotation of the metric. Such a modification to the nature of time may also have relevance for other approaches to quantum gravity.Comment: 15 pages, 4 figures. Conforms with version to be published in PRD. Clarifications and references adde

    Spectral dimension of quantum geometries

    Full text link
    The spectral dimension is an indicator of geometry and topology of spacetime and a tool to compare the description of quantum geometry in various approaches to quantum gravity. This is possible because it can be defined not only on smooth geometries but also on discrete (e.g., simplicial) ones. In this paper, we consider the spectral dimension of quantum states of spatial geometry defined on combinatorial complexes endowed with additional algebraic data: the kinematical quantum states of loop quantum gravity (LQG). Preliminarily, the effects of topology and discreteness of classical discrete geometries are studied in a systematic manner. We look for states reproducing the spectral dimension of a classical space in the appropriate regime. We also test the hypothesis that in LQG, as in other approaches, there is a scale dependence of the spectral dimension, which runs from the topological dimension at large scales to a smaller one at short distances. While our results do not give any strong support to this hypothesis, we can however pinpoint when the topological dimension is reproduced by LQG quantum states. Overall, by exploring the interplay of combinatorial, topological and geometrical effects, and by considering various kinds of quantum states such as coherent states and their superpositions, we find that the spectral dimension of discrete quantum geometries is more sensitive to the underlying combinatorial structures than to the details of the additional data associated with them.Comment: 39 pages, 18 multiple figures. v2: discussion improved, minor typos correcte

    Borel generators

    Full text link
    We use the notion of Borel generators to give alternative methods for computing standard invariants, such as associated primes, Hilbert series, and Betti numbers, of Borel ideals. Because there are generally few Borel generators relative to ordinary generators, this enables one to do manual computations much more easily. Moreover, this perspective allows us to find new connections to combinatorics involving Catalan numbers and their generalizations. We conclude with a surprising result relating the Betti numbers of certain principal Borel ideals to the number of pointed pseudo-triangulations of particular planar point sets.Comment: 23 pages, 2 figures; very minor changes in v2. To appear in J. Algebr

    IPN localizations of Konus short gamma-ray bursts

    Full text link
    Between the launch of the \textit{GGS Wind} spacecraft in 1994 November and the end of 2010, the Konus-\textit{Wind} experiment detected 296 short-duration gamma-ray bursts (including 23 bursts which can be classified as short bursts with extended emission). During this period, the IPN consisted of up to eleven spacecraft, and using triangulation, the localizations of 271 bursts were obtained. We present the most comprehensive IPN localization data on these events. The short burst detection rate, \sim18 per year, exceeds that of many individual experiments.Comment: Published versio

    BPS state counting on singular varieties

    Full text link
    We define new partition functions for theories with targets on toric singularities via products of old partition functions on crepant resolutions. We compute explicit examples and show that the new partition functions turn out to be homogeneous on MacMahon factors.Comment: 16 pages Latex. Text reorganized. Expanded with comments on the spaces C_mn, proofs of Prop 4.1 and another proof of Prop. 5.4 added. Reference list updated.Version published in J. Phys A (color online
    corecore