12,166 research outputs found

    A comprehensive study of implicator-conjunctor based and noise-tolerant fuzzy rough sets: definitions, properties and robustness analysis

    Get PDF
    © 2014 Elsevier B.V. Both rough and fuzzy set theories offer interesting tools for dealing with imperfect data: while the former allows us to work with uncertain and incomplete information, the latter provides a formal setting for vague concepts. The two theories are highly compatible, and since the late 1980s many researchers have studied their hybridization. In this paper, we critically evaluate most relevant fuzzy rough set models proposed in the literature. To this end, we establish a formally correct and unified mathematical framework for them. Both implicator-conjunctor-based definitions and noise-tolerant models are studied. We evaluate these models on two different fronts: firstly, we discuss which properties of the original rough set model can be maintained and secondly, we examine how robust they are against both class and attribute noise. By highlighting the benefits and drawbacks of the different fuzzy rough set models, this study appears a necessary first step to propose and develop new models in future research.Lynn D’eer has been supported by the Ghent University Special Research Fund, Chris Cornelis was partially supported by the Spanish Ministry of Science and Technology under the project TIN2011-28488 and the Andalusian Research Plans P11-TIC-7765 and P10-TIC-6858, and by project PYR-2014-8 of the Genil Program of CEI BioTic GRANADA and Lluis Godo has been partially supported by the Spanish MINECO project EdeTRI TIN2012-39348-C02-01Peer Reviewe

    Parameter Selection and Uncertainty Measurement for Variable Precision Probabilistic Rough Set

    Get PDF
    In this paper, we consider the problem of parameter selection and uncertainty measurement for a variable precision probabilistic rough set. Firstly, within the framework of the variable precision probabilistic rough set model, the relative discernibility of a variable precision rough set in probabilistic approximation space is discussed, and the conditions that make precision parameters α discernible in a variable precision probabilistic rough set are put forward. Concurrently, we consider the lack of predictability of precision parameters in a variable precision probabilistic rough set, and we propose a systematic threshold selection method based on relative discernibility of sets, using the concept of relative discernibility in probabilistic approximation space. Furthermore, a numerical example is applied to test the validity of the proposed method in this paper. Secondly, we discuss the problem of uncertainty measurement for the variable precision probabilistic rough set. The concept of classical fuzzy entropy is introduced into probabilistic approximation space, and the uncertain information that comes from approximation space and the approximated objects is fully considered. Then, an axiomatic approach is established for uncertainty measurement in a variable precision probabilistic rough set, and several related interesting properties are also discussed. Thirdly, we study the attribute reduction for the variable precision probabilistic rough set. The definition of reduction and its characteristic theorems are given for the variable precision probabilistic rough set. The main contribution of this paper is twofold. One is to propose a method of parameter selection for a variable precision probabilistic rough set. Another is to present a new approach to measurement uncertainty and the method of attribute reduction for a variable precision probabilistic rough set
    • …
    corecore