24,930 research outputs found

    Simulation of the spatio-temporal extent of groundwater flooding using statistical methods of hydrograph classification and lumped parameter models

    Get PDF
    This article presents the development of a relatively low cost and rapidly applicable methodology to simulate the spatio-temporal occurrence of groundwater flooding in chalk catchments. In winter 2000/2001 extreme rainfall resulted in anomalously high groundwater levels and groundwater flooding in many chalk catchments of northern Europe and the southern United Kingdom. Groundwater flooding was extensive and prolonged, occurring in areas where it had not been recently observed and, in places, lasting for 6 months. In many of these catchments, the prediction of groundwater flooding is hindered by the lack of an appropriate tool, such as a distributed groundwater model, or the inability of models to simulate extremes adequately. A set of groundwater hydrographs is simulated using a simple lumped parameter groundwater model. The number of models required is minimized through the classification and grouping of groundwater level time-series using principal component analysis and cluster analysis. One representative hydrograph is modelled then transposed to other observed hydrographs in the same group by the process of quantile mapping. Time-variant groundwater level surfaces, generated using the discrete set of modelled hydrographs and river elevation data, are overlain on a digital terrain model to predict the spatial extent of groundwater flooding. The methodology is applied to the Pang and Lambourn catchments in southern England for which monthly groundwater level time-series exist for 52 observation boreholes covering the period 1975–2004. The results are validated against observed groundwater flood extent data obtained from aerial surveys and field mapping. The method is shown to simulate the spatial and temporal occurrence of flooding during the 2000/2001 flood event accurately

    A Simple Flood Forecasting Scheme Using Wireless Sensor Networks

    Full text link
    This paper presents a forecasting model designed using WSNs (Wireless Sensor Networks) to predict flood in rivers using simple and fast calculations to provide real-time results and save the lives of people who may be affected by the flood. Our prediction model uses multiple variable robust linear regression which is easy to understand and simple and cost effective in implementation, is speed efficient, but has low resource utilization and yet provides real time predictions with reliable accuracy, thus having features which are desirable in any real world algorithm. Our prediction model is independent of the number of parameters, i.e. any number of parameters may be added or removed based on the on-site requirements. When the water level rises, we represent it using a polynomial whose nature is used to determine if the water level may exceed the flood line in the near future. We compare our work with a contemporary algorithm to demonstrate our improvements over it. Then we present our simulation results for the predicted water level compared to the actual water level.Comment: 16 pages, 4 figures, published in International Journal Of Ad-Hoc, Sensor And Ubiquitous Computing, February 2012; V. seal et al, 'A Simple Flood Forecasting Scheme Using Wireless Sensor Networks', IJASUC, Feb.201

    Combination of Conventional and Optimisation Techniques for Performance Prediction in Large Waterflood Projects

    Get PDF
    Imperial Users onl

    Predicting floods in a large karst river basin by coupling PERSIANN-CCS QPEs with a physically based distributed hydrological model

    Get PDF
    In general, there are no long-term meteorological or hydrological data available for karst river basins. The lack of rainfall data is a great challenge that hinders the development of hydrological models. Quantitative precipitation estimates (QPEs) based on weather satellites offer a potential method by which rainfall data in karst areas could be obtained. Furthermore, coupling QPEs with a distributed hydrological model has the potential to improve the precision of flood predictions in large karst watersheds. Estimating precipitation from remotely sensed information using an artificial neural network-cloud classification system (PERSIANN-CCS) is a type of QPE technology based on satellites that has achieved broad research results worldwide. However, only a few studies on PERSIANN-CCS QPEs have occurred in large karst basins, and the accuracy is generally poor in terms of practical applications. This paper studied the feasibility of coupling a fully physically based distributed hydrological model, i.e., the Liuxihe model, with PERSIANN-CCS QPEs for predicting floods in a large river basin, i.e., the Liujiang karst river basin, which has a watershed area of 58 270 km-2, in southern China. The model structure and function require further refinement to suit the karst basins. For instance, the sub-basins in this paper are divided into many karst hydrology response units (KHRUs) to ensure that the model structure is adequately refined for karst areas. In addition, the convergence of the underground runoff calculation method within the original Liuxihe model is changed to suit the karst water-bearing media, and the Muskingum routing method is used in the model to calculate the underground runoff in this study. Additionally, the epikarst zone, as a distinctive structure of the KHRU, is carefully considered in the model. The result of the QPEs shows that compared with the observed precipitation measured by a rain gauge, the distribution of precipitation predicted by the PERSIANN-CCS QPEs was very similar. However, the quantity of precipitation predicted by the PERSIANN-CCS QPEs was smaller. A post-processing method is proposed to revise the products of the PERSIANN-CCS QPEs. The karst flood simulation results show that coupling the post-processed PERSIANN-CCS QPEs with the Liuxihe model has a better performance relative to the result based on the initial PERSIANN-CCS QPEs. Moreover, the performance of the coupled model largely improves with parameter re-optimization via the post-processed PERSIANN-CCS QPEs. The average values of the six evaluation indices change as follows: the Nash-Sutcliffe coefficient increases by 14 %, the correlation coefficient increases by 15 %, the process relative error decreases by 8 %, the peak flow relative error decreases by 18 %, the water balance coefficient increases by 8 %, and the peak flow time error displays a 5 h decrease. Among these parameters, the peak flow relative error shows the greatest improvement; thus, these parameters are of page1506 the greatest concern for flood prediction. The rational flood simulation results from the coupled model provide a great practical application prospect for flood prediction in large karst river basins

    Surrogate-based optimization of tidal turbine arrays: a case study for the Faro-OlhĂŁo inlet

    Get PDF
    This paper presents a study for estimating the size of a tidal turbine array for the Faro-Olhão Inlet (Potugal) using a surrogate optimization approach. The method compromises problem formulation, hydro-morphodynamic modelling, surrogate construction and validation, and constraint optimization. A total of 26 surrogates were built using linear RBFs as a function of two design variables: number of rows in the array and Tidal Energy Converters (TECs) per row. Surrogates describe array performance and environmental effects associated with hydrodynamic and morphological aspects of the multi inlet lagoon. After validation, surrogate models were used to formulate a constraint optimization model. Results evidence that the largest array size that satisfies performance and environmental constraints is made of 3 rows and 10 TECs per row.Eduardo González-Gorbeña has received funding for the OpTiCA project (http://msca-optica.eu/) from the Marie Skłodowska-Curie Actions of the European Union's H2020-MSCA-IF-EF-RI-2016 / GA#: 748747. The paper is a contribution to the SCORE pro-ject, funded by the Portuguese Foundation for Science and Technology (FCT–PTDC/AAG-TEC/1710/2014). André Pacheco was supported by the Portuguese Foun-dation for Science and Technology under the Portuguese Researchers’ Programme 2014 entitled “Exploring new concepts for extracting energy from tides” (IF/00286/2014/CP1234).info:eu-repo/semantics/publishedVersio

    Analysis of information systems for hydropower operations

    Get PDF
    The operations of hydropower systems were analyzed with emphasis on water resource management, to determine how aerospace derived information system technologies can increase energy output. Better utilization of water resources was sought through improved reservoir inflow forecasting based on use of hydrometeorologic information systems with new or improved sensors, satellite data relay systems, and use of advanced scheduling techniques for water release. Specific mechanisms for increased energy output were determined, principally the use of more timely and accurate short term (0-7 days) inflow information to reduce spillage caused by unanticipated dynamic high inflow events. The hydrometeorologic models used in predicting inflows were examined to determine the sensitivity of inflow prediction accuracy to the many variables employed in the models, and the results used to establish information system requirements. Sensor and data handling system capabilities were reviewed and compared to the requirements, and an improved information system concept outlined

    Probabilistic modeling of flood characterizations with parametric and minimum information pair-copula model

    Get PDF
    This paper highlights the usefulness of the minimum information and parametric pair-copula construction (PCC) to model the joint distribution of flood event properties. Both of these models outperform other standard multivariate copula in modeling multivariate flood data that exhibiting complex patterns of dependence, particularly in the tails. In particular, the minimum information pair-copula model shows greater flexibility and produces better approximation of the joint probability density and corresponding measures have capability for effective hazard assessments. The study demonstrates that any multivariate density can be approximated to any degree of desired precision using minimum information pair-copula model and can be practically used for probabilistic flood hazard assessment
    • …
    corecore