963 research outputs found

    New results on metric-locating-dominating sets of graphs

    Get PDF
    A dominating set SS of a graph is a metric-locating-dominating set if each vertex of the graph is uniquely distinguished by its distances from the elements of SS, and the minimum cardinality of such a set is called the metric-location-domination number. In this paper, we undertake a study that, in general graphs and specific families, relates metric-locating-dominating sets to other special sets: resolving sets, dominating sets, locating-dominating sets and doubly resolving sets. We first characterize classes of trees according to certain relationships between their metric-location-domination number and their metric dimension and domination number. Then, we show different methods to transform metric-locating-dominating sets into locating-dominating sets and doubly resolving sets. Our methods produce new bounds on the minimum cardinalities of all those sets, some of them involving parameters that have not been related so far.Comment: 13 pages, 3 figure

    Metric Dimension of Amalgamation of Graphs

    Full text link
    A set of vertices SS resolves a graph GG if every vertex is uniquely determined by its vector of distances to the vertices in SS. The metric dimension of GG is the minimum cardinality of a resolving set of GG. Let {G1,G2,…,Gn}\{G_1, G_2, \ldots, G_n\} be a finite collection of graphs and each GiG_i has a fixed vertex v0iv_{0_i} or a fixed edge e0ie_{0_i} called a terminal vertex or edge, respectively. The \emph{vertex-amalgamation} of G1,G2,…,GnG_1, G_2, \ldots, G_n, denoted by Vertex−Amal{Gi;v0i}Vertex-Amal\{G_i;v_{0_i}\}, is formed by taking all the GiG_i's and identifying their terminal vertices. Similarly, the \emph{edge-amalgamation} of G1,G2,…,GnG_1, G_2, \ldots, G_n, denoted by Edge−Amal{Gi;e0i}Edge-Amal\{G_i;e_{0_i}\}, is formed by taking all the GiG_i's and identifying their terminal edges. Here we study the metric dimensions of vertex-amalgamation and edge-amalgamation for finite collection of arbitrary graphs. We give lower and upper bounds for the dimensions, show that the bounds are tight, and construct infinitely many graphs for each possible value between the bounds.Comment: 9 pages, 2 figures, Seventh Czech-Slovak International Symposium on Graph Theory, Combinatorics, Algorithms and Applications (CSGT2013), revised version 21 December 201

    Metric-locating-dominating sets of graphs for constructing related subsets of vertices

    Get PDF
    © 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/A dominating set S of a graph is a metric-locating-dominating set if each vertex of the graph is uniquely distinguished by its distances from the elements of S , and the minimum cardinality of such a set is called the metric-location-domination number. In this paper, we undertake a study that, in general graphs and specific families, relates metric-locating-dominating sets to other special sets: resolving sets, dominating sets, locating-dominating sets and doubly resolving sets. We first characterize the extremal trees of the bounds that naturally involve metric-location-domination number, metric dimension and domination number. Then, we prove that there is no polynomial upper bound on the location-domination number in terms of the metric-location-domination number, thus extending a result of Henning and Oellermann. Finally, we show different methods to transform metric-locating-dominating sets into locating-dominating sets and doubly resolving sets. Our methods produce new bounds on the minimum cardinalities of all those sets, some of them concerning parameters that have not been related so farPeer ReviewedPostprint (author's final draft

    Riemannian Optimization for Convex and Non-Convex Signal Processing and Machine Learning Applications

    Get PDF
    The performance of most algorithms for signal processing and machine learning applications highly depends on the underlying optimization algorithms. Multiple techniques have been proposed for solving convex and non-convex problems such as interior-point methods and semidefinite programming. However, it is well known that these algorithms are not ideally suited for large-scale optimization with a high number of variables and/or constraints. This thesis exploits a novel optimization method, known as Riemannian optimization, for efficiently solving convex and non-convex problems with signal processing and machine learning applications. Unlike most optimization techniques whose complexities increase with the number of constraints, Riemannian methods smartly exploit the structure of the search space, a.k.a., the set of feasible solutions, to reduce the embedded dimension and efficiently solve optimization problems in a reasonable time. However, such efficiency comes at the expense of universality as the geometry of each manifold needs to be investigated individually. This thesis explains the steps of designing first and second-order Riemannian optimization methods for smooth matrix manifolds through the study and design of optimization algorithms for various applications. In particular, the paper is interested in contemporary applications in signal processing and machine learning, such as community detection, graph-based clustering, phase retrieval, and indoor and outdoor location determination. Simulation results are provided to attest to the efficiency of the proposed methods against popular generic and specialized solvers for each of the above applications
    • …
    corecore