26,552 research outputs found

    Acquisition of spatially-resolved displacement propagators using compressed sensing APGSTE-RARE MRI.

    Get PDF
    A method is presented for accelerating the acquisition of spatially-resolved displacement propagators via under-sampling of an Alternating Pulsed Gradient Stimulated Echo - Rapid Acquisition with Relaxation Enhancement (APGSTE-RARE) data acquisition with compressed sensing image reconstruction. The method was demonstrated with respect to the acquisition of 2D spatially-resolved displacement propagators of water flowing through a packed bed of hollow cylinders. The q,k-space was under-sampled according to variable-density pseudo-random sampling patterns. The quality of compressed sensing reconstructions of spatially-resolved propagators at a range of sampling fractions was assessed using the peak signal-to-noise ratio (PSNR) as a quality metric. Propagators of good quality (PSNR 33.2 dB) were reconstructed from only 6.25% of all data points in q,k-space, resulting in a reduction in the data acquisition time from 4 h to 14 min. The spatially-resolved propagators were reconstructed using both the total variation and nuclear norm sparsifying transforms; use of total variation resulted in a slightly higher quality of the reconstructed image in most cases. To illustrate the power of this method to characterise heterogeneous flow in porous media, the method is applied to the characterisation of flow in a vuggy carbonate rock

    Structured random measurements in signal processing

    Full text link
    Compressed sensing and its extensions have recently triggered interest in randomized signal acquisition. A key finding is that random measurements provide sparse signal reconstruction guarantees for efficient and stable algorithms with a minimal number of samples. While this was first shown for (unstructured) Gaussian random measurement matrices, applications require certain structure of the measurements leading to structured random measurement matrices. Near optimal recovery guarantees for such structured measurements have been developed over the past years in a variety of contexts. This article surveys the theory in three scenarios: compressed sensing (sparse recovery), low rank matrix recovery, and phaseless estimation. The random measurement matrices to be considered include random partial Fourier matrices, partial random circulant matrices (subsampled convolutions), matrix completion, and phase estimation from magnitudes of Fourier type measurements. The article concludes with a brief discussion of the mathematical techniques for the analysis of such structured random measurements.Comment: 22 pages, 2 figure
    • …
    corecore