95 research outputs found

    Structure-Constrained Basis Pursuit for Compressively Sensing Speech

    Get PDF
    Compressed Sensing (CS) exploits the sparsity of many signals to enable sampling below the Nyquist rate. If the original signal is sufficiently sparse, the Basis Pursuit (BP) algorithm will perfectly reconstruct the original signal. Unfortunately many signals that intuitively appear sparse do not meet the threshold for sufficient sparsity . These signals require so many CS samples for accurate reconstruction that the advantages of CS disappear. This is because Basis Pursuit/Basis Pursuit Denoising only models sparsity. We developed a Structure-Constrained Basis Pursuit that models the structure of somewhat sparse signals as upper and lower bound constraints on the Basis Pursuit Denoising solution. We applied it to speech, which seems sparse but does not compress well with CS, and gained improved quality over Basis Pursuit Denoising. When a single parameter (i.e. the phone) is encoded, Normalized Mean Squared Error (NMSE) decreases by between 16.2% and 1.00% when sampling with CS between 1/10 and 1/2 the Nyquist rate, respectively. When bounds are coded as a sum of Gaussians, NMSE decreases between 28.5% and 21.6% in the same range. SCBP can be applied to any somewhat sparse signal with a predictable structure to enable improved reconstruction quality with the same number of samples

    Speech spectrum non-stationarity detection based on line spectrum frequencies and related applications

    Get PDF
    Ankara : Department of Electrical and Electronics Engineering and The Institute of Engineering and Sciences of Bilkent University, 1998.Thesis (Master's) -- Bilkent University, 1998.Includes bibliographical references leaves 124-132In this thesis, two new speech variation measures for speech spectrum nonstationarity detection are proposed. These measures are based on the Line Spectrum Frequencies (LSF) and the spectral values at the LSF locations. They are formulated to be subjectively meaningful, mathematically tractable, and also have low computational complexity property. In order to demonstrate the usefulness of the non-stationarity detector, two applications are presented: The first application is an implicit speech segmentation system which detects non-stationary regions in speech signal and obtains the boundaries of the speech segments. The other application is a Variable Bit-Rate Mixed Excitation Linear Predictive (VBR-MELP) vocoder utilizing a novel voice activity detector to detect silent regions in the speech. This voice activity detector is designed to be robust to non-stationary background noise and provides efficient coding of silent sections and unvoiced utterances to decrease the bit-rate. Simulation results are also presented.Ertan, Ali ErdemM.S

    Variable-rate speech coding: Replacing unvoiced excitations by linear prediction residues of different phonemes

    Get PDF
    Afin de réduire le débit binaire de la transmission de la parole sans perte de qualité de celle-ci, nous développons un vocodeur qui utilise des méthodes differentes pour le codage des trames voisées et non voisées. Nous présentons ici une nouvelle idée de décrire des phonèmes fricatifs (sifflantes) et plosifs avec seulement 20 bit par trame de t = 20ms. Nous montrons que ces phonèmes peuvent être représentés par des coefficients de la prédiction linéaire combinés avec un signal résiduel extrait d'un autre phonème prononcé par une personne differente connue à la station réceptrice du système de codage (voir figure 1). La présente contribution décrit aussi des algorithmes qui garantissent des transitions douces dans d'autres catégories de phonèmes. En appliquant cette technique on peut considérablement réduire le débit de transmission (jusqu'à 1 kbit/seconde) pour les trames non voisées. Nous obtenons de meilleurs résultats qu'en utilisant des variantes de CELP (prédiction linéaire excitée par une table de codage) à 4 kbit/seconde. La combinaison de ce codage avec des méthodes de codage harmonique (par exemple le MBE: 'Multiband Excitation') pour les trames voisées resulte en un débit binaire variable de moins de 3 kbit/seconde

    An investigation into glottal waveform based speech coding

    Get PDF
    Coding of voiced speech by extraction of the glottal waveform has shown promise in improving the efficiency of speech coding systems. This thesis describes an investigation into the performance of such a system. The effect of reverberation on the radiation impedance at the lips is shown to be negligible under normal conditions. Also, the accuracy of the Image Method for adding artificial reverberation to anechoic speech recordings is established. A new algorithm, Pre-emphasised Maximum Likelihood Epoch Detection (PMLED), for Glottal Closure Instant detection is proposed. The algorithm is tested on natural speech and is shown to be both accurate and robust. Two techniques for giottai waveform estimation, Closed Phase Inverse Filtering (CPIF) and Iterative Adaptive Inverse Filtering (IAIF), are compared. In tandem with an LF model fitting procedure, both techniques display a high degree of accuracy However, IAIF is found to be slightly more robust. Based on these results, a Glottal Excited Linear Predictive (GELP) coding system for voiced speech is proposed and tested. Using a differential LF parameter quantisation scheme, the system achieves speech quality similar to that of U S Federal Standard 1016 CELP at a lower mean bit rate while incurring no extra delay

    Using a low-bit rate speech enhancement variable post-filter as a speech recognition system pre-filter to improve robustness to GSM speech

    Get PDF
    Includes bibliographical references.Performance of speech recognition systems degrades when they are used to recognize speech that has been transmitted through GS1 (Global System for Mobile Communications) voice communication channels (GSM speech). This degradation is mainly due to GSM speech coding and GSM channel noise on speech signals transmitted through the network. This poor recognition of GSM channel speech limits the use of speech recognition applications over GSM networks. If speech recognition technology is to be used unlimitedly over GSM networks recognition accuracy of GSM channel speech has to be improved. Different channel normalization techniques have been developed in an attempt to improve recognition accuracy of voice channel modified speech in general (not specifically for GSM channel speech). These techniques can be classified into three broad categories, namely, model modification, signal pre-processing and feature processing techniques. In this work, as a contribution toward improving the robustness of speech recognition systems to GSM speech, the use of a low-bit speech enhancement post-filter as a speech recognition system pre-filter is proposed. This filter is to be used in recognition systems in combination with channel normalization techniques

    CELP and speech enhancement

    Get PDF
    This thesis addresses the intelligibility enhancement of speech that is heard within an acoustically noisy environment. In particular, a realistic target situation of a police vehicle interior, with speech generated from a CELP (codebook-excited linear prediction) speech compression-based communication system, is adopted. The research has centred on the role of the CELP speech compression algorithm, and its transmission parameters. In particular, novel methods of LSP-based (line spectral pair) speech analysis and speech modification are developed and described. CELP parameters have been utilised in the analysis and processing stages of a speech intelligibility enhancement system to minimise additional computational complexity over existing CELP coder requirements. Details are given of the CELP analysis process and its effects on speech, the development of speech analysis and alteration algorithms coexisting with a CELP system, their effects and performance. Both objective and subjective tests have been used to characterize the effectiveness of the analysis and processing methods. Subjective testing of a complete simulation enhancement system indicates its effectiveness under the tested conditions, and is extrapolated to predict real-life performance. The developed system presents a novel integrated solution to the intelligibility enhancement of speech, and can provide a doubling, on average, of intelligibility under the tested conditions of very low intelligibility
    corecore