183 research outputs found

    Tuning Fuzzy-Logic Controllers

    Get PDF

    Design and simulation of the robust ABS and ESP fuzzy logic controller on the complex braking maneuvers

    Get PDF
    Automotive driving safety systems such as an anti-lock braking system (ABS) and an electronic stability program (ESP) assist drivers in controlling the vehicle to avoid road accidents. In this paper, ABS and the ESP, based on the fuzzy logic theory, are integrated for vehicle stability control in complex braking maneuvers. The proposed control algorithm is implemented for a sport utility vehicle (SUV) and investigated for braking on different surfaces. The results obtained for the vehicle software simulator confirm the robustness of the developed control strategy for a variety of road profiles and surfaces

    Advantages of Fuzzy Control While Dealing with Complex/ Unknown Model Dynamics: A Quadcopter Example

    Get PDF
    Commonly, complex and uncertain plants cannot be faced through well-known linear approaches. Most of the time, complex controllers are needed to attain expected stability and robustness; however, they usually lack a simple design methodology and their actual implementation is difficult (if not impossible). Fuzzy logic control is an intelligent technique which, on its basis, allows the translation from logic statements to a nonlinear mapping. Although it has been proven to effectively deal with complex plants, many recent studies have moved away from the basic premise of linguistic interpretability. In this work, a simple fuzzy controller is designed in a clear way, privileging design easiness and logical consistency of linguistic operators. It is simulated together to a nonlinear model of a quadcopter with added actuators variability, so the robust operation of the controller is also proven. Uneven gain, bandwidth, and time-delay variations are applied among quadcopter’s motors, so the simulations results enclose those characteristics which could be found in reality. As those variations can be related to actuators’ performance, an analysis can be driven in terms of the features which are not commonly included in mathematical models like power electronics drives or electric machinery. These considerations may shorten the gap between simulation and actual implementation of the fuzzy controller. Briefly, this chapter presents a simple fuzzy controller which deals with a quadcopter plant as a first approach to intelligent control

    Situational awareness-based energy management for unmanned electric surveillance platforms

    Get PDF
    In the present day fossil fuel availability, cost, security and the pollutant emissions resulting from its use have driven industry into looking for alternative ways of powering vehicles. The aim of this research is to synthesize/design and develop a framework of novel control architectures which can result in complex powered vehicle subsystems to perform better with reduced exogeneuous information. This research looks into the area of energy management by proposing an intelligent based system which not only looks at the beaten path of where energy comes from and how much of it to use, but it goes further by taking into consideration the world around it. By operating without GPS, it realies on data such as usage, average consumption, system loads and even other surrounding vehicles are considered when making the difficult decisions of where to direct the energy into, how much of it, and even when to cut systems off in benefit of others. All this is achieved in an integrated way by working within the limitations of non-fossil fuelled energy sources like fuel cells, ultracapacitors and battery banks using driver-provided information or by crafting an artificial usage profile from historicaly learnt data. By using an organic computing philosophy based on artificial intelligence this alternative approach to energy supply systems presents a different perspective beginning by accepting the fact that when hardware is set energy can be optimized only so much and takes a step further by answering the question of how to best manage it when refuelling might not be an option. The result is a situationally aware system concept that is portable to any type of electrically powered platform be it ground, aerial or marine since it operates on the fact that all operate within three dimensional space. The system´s capabilities are then verified in a virtual reality environment which can be tailored to the meet reseach needs including allowing for different altitudes, environmental temperature and humidity profiles. This VR system is coupled with a chassis dynamometer to allow for testing of real physical prototype unmanned ground vehicles where the intelligent system will benefit by learning from real platform data. The Thesis contributions and objectives are summarised next: The control system proposed includes an awareness of the surroundings within which the vehicle is operating without relying on GPS position information. The system proposed is portable and could be used to control other systems. The test platform developed within the Thesis is flexible and could be used for other systems. The control system for the fuel cell system described within the work has included an allowance for altitude and humidity. These factors would appear to be significant for such systems. The structure of the control system and its hierarchy is novel. The ability of the system to be applied to a UAV and as such control a ‘vehicle’ in 3 dimensions, and yet be also applied to a ground vehicle, where roll and pitch are largely a function of the ground over which it travels (so the UGV only uses a subset of the control functionality). The mission awareness of the control structure appears to be the heart of the potential contribution to knowledge, and that this also includes the ability to create an estimated, artificial mission profile should one not be input by the operators. This learnt / adaptive input could be expanded on to highlight this aspect

    System modelling and control

    Get PDF
    Not Availabl

    1999 Flight Mechanics Symposium

    Get PDF
    This conference publication includes papers and abstracts presented at the Flight Mechanics Symposium held on May 18-20, 1999. Sponsored by the Guidance, Navigation and Control Center of Goddard Space Flight Center, this symposium featured technical papers on a wide range of issues related to orbit-attitude prediction, determination, and control; attitude sensor calibration; attitude determination error analysis; attitude dynamics; and orbit decay and maneuver strategy. Government, industry, and the academic community participated in the preparation and presentation of these papers

    Mechatronic Systems

    Get PDF
    Mechatronics, the synergistic blend of mechanics, electronics, and computer science, has evolved over the past twenty five years, leading to a novel stage of engineering design. By integrating the best design practices with the most advanced technologies, mechatronics aims at realizing high-quality products, guaranteeing at the same time a substantial reduction of time and costs of manufacturing. Mechatronic systems are manifold and range from machine components, motion generators, and power producing machines to more complex devices, such as robotic systems and transportation vehicles. With its twenty chapters, which collect contributions from many researchers worldwide, this book provides an excellent survey of recent work in the field of mechatronics with applications in various fields, like robotics, medical and assistive technology, human-machine interaction, unmanned vehicles, manufacturing, and education. We would like to thank all the authors who have invested a great deal of time to write such interesting chapters, which we are sure will be valuable to the readers. Chapters 1 to 6 deal with applications of mechatronics for the development of robotic systems. Medical and assistive technologies and human-machine interaction systems are the topic of chapters 7 to 13.Chapters 14 and 15 concern mechatronic systems for autonomous vehicles. Chapters 16-19 deal with mechatronics in manufacturing contexts. Chapter 20 concludes the book, describing a method for the installation of mechatronics education in schools
    • …
    corecore