690 research outputs found

    Sci Robot

    Get PDF
    Robotic leg prostheses promise to improve the mobility and quality of life of millions of individuals with lower-limb amputations by imitating the biomechanics of the missing biological leg. Unfortunately, existing powered prostheses are much heavier and bigger and have shorter battery life than conventional passive prostheses, severely limiting their clinical viability and utility in the daily life of amputees. Here, we present a robotic leg prosthesis that replicates the key biomechanical functions of the biological knee, ankle, and toe in the sagittal plane while matching the weight, size, and battery life of conventional microprocessor-controlled prostheses. The powered knee joint uses a unique torque-sensitive mechanism combining the benefits of elastic actuators with that of variable transmissions. A single actuator powers the ankle and toe joints through a compliant, underactuated mechanism. Because the biological toe dissipates energy while the biological ankle injects energy into the gait cycle, this underactuated system regenerates substantial mechanical energy and replicates the key biomechanical functions of the ankle/foot complex during walking. A compact prosthesis frame encloses all mechanical and electrical components for increased robustness and efficiency. Preclinical tests with three individuals with above-knee amputation show that the proposed robotic leg prosthesis allows for common ambulation activities with close to normative kinematics and kinetics. Using an optional passive mode, users can walk on level ground indefinitely without charging the battery, which has not been shown with any other powered or microprocessor-controlled prostheses. A prosthesis with these characteristics has the potential to improve real-world mobility in individuals with above-knee amputation.R01 HD098154/HD/NICHD NIH HHSUnited States/T42 OH008414/OH/NIOSH CDC HHSUnited States

    An Overview on Principles for Energy Efficient Robot Locomotion

    Get PDF
    Despite enhancements in the development of robotic systems, the energy economy of today's robots lags far behind that of biological systems. This is in particular critical for untethered legged robot locomotion. To elucidate the current stage of energy efficiency in legged robotic systems, this paper provides an overview on recent advancements in development of such platforms. The covered different perspectives include actuation, leg structure, control and locomotion principles. We review various robotic actuators exploiting compliance in series and in parallel with the drive-train to permit energy recycling during locomotion. We discuss the importance of limb segmentation under efficiency aspects and with respect to design, dynamics analysis and control of legged robots. This paper also reviews a number of control approaches allowing for energy efficient locomotion of robots by exploiting the natural dynamics of the system, and by utilizing optimal control approaches targeting locomotion expenditure. To this end, a set of locomotion principles elaborating on models for energetics, dynamics, and of the systems is studied

    Simulación del modelo de actuador serial elástico para prótesis Tobillo-Pie en Matlab

    Get PDF
    The ankle - foot set plays a very important role for human displacement, such as walking or running, giving vertical support and propulsion to the human walking progression by using the muscle extension and contraction. Many designs have been developed to replicate the function of normal gait, lost by injuries or diseases affecting the limb below the knee [1]. Motor rehabilitation has become a field of growing interest, due to the large number of cases of people with injuries or mutilation in its members or in other cases by cerebrovascular accidents and spinal cord damage that cause paralysis or any kind of disability. [2], [3]. This paper shows the process to get the model of SEA mechanism in Matlab, linking VR-World of Simulink from 3D Solidworks Model to test the model and finally checking the characteristic curves of normal gait to 1.5 m/s with this SEA prosthesis.El conjunto tobillo-pie desempeña un papel muy importante para el movimiento humano, como caminar o correr, ya que proporciona apoyo vertical y propulsión de la progresión de la marcha humana mediante la extensión y contracción muscular. Se han desarrollado muchos diseños para replicar la función de la marcha normal, perdida por lesiones o enfermedades que afectan la extremidad debajo de la rodilla [1]. La rehabilitación motora se ha convertido en un campo de amplio interés, ya que en Colombia hay gran cantidad de casos de personas con lesiones o mutilaciones en sus miembros o en otros casos por accidentes cerebrovasculares y daño medular que provocan parálisis o cualquier tipo de discapacidad. [2], [3]. Este artículo muestra el proceso para obtener el modelo del mecanismo SEA en Matlab, vinculando el VR-World de Simulink con un modelo 3D en Solidworks de la prótesis para validarlo y finalmente verificar las curvas características de la marcha normal a 1,5 m / s con esta prótesis SEA

    Advancements in Prosthetics and Joint Mechanisms

    Get PDF
    abstract: Robotic joints can be either powered or passive. This work will discuss the creation of a passive and a powered joint system as well as the combination system being both powered and passive along with its benefits. A novel approach of analysis and control of the combination system is presented. A passive and a powered ankle joint system is developed and fit to the field of prosthetics, specifically ankle joint replacement for able bodied gait. The general 1 DOF robotic joint designs are examined and the results from testing are discussed. Achievements in this area include the able bodied gait like behavior of passive systems for slow walking speeds. For higher walking speeds the powered ankle system is capable of adding the necessary energy to propel the user forward and remain similar to able bodied gait, effectively replacing the calf muscle. While running has not fully been achieved through past powered ankle devices the full power necessary is reached in this work for running and sprinting while achieving 4x’s power amplification through the powered ankle mechanism. A theoretical approach to robotic joints is then analyzed in order to combine the advantages of both passive and powered systems. Energy methods are shown to provide a correct behavioral analysis of any robotic joint system. Manipulation of the energy curves and mechanism coupler curves allows real time joint behavioral adjustment. Such a powered joint can be adjusted to passively achieve desired behavior for different speeds and environmental needs. The effects on joint moment and stiffness from adjusting one type of mechanism is presented.Dissertation/ThesisDoctoral Dissertation Mechanical Engineering 201
    • …
    corecore