1,030 research outputs found

    Special Power Electronics Converters and Machine Drives with Wide Band-Gap Devices

    Get PDF
    Power electronic converters play a key role in power generation, storage, and consumption. The major portion of power losses in the converters is dissipated in the semiconductor switching devices. In recent years, new power semiconductors based on wide band-gap (WBG) devices have been increasingly developed and employed in terms of promising merits including the lower on-state resistance, lower turn-on/off energy, higher capable switching frequency, higher temperature tolerance than conventional Si devices. However, WBG devices also brought new challenges including lower fault tolerance, higher system cost, gate driver challenges, and high dv/dt and resulting increased bearing current in electric machines. This work first proposed a hybrid Si IGBTs + SiC MOSFETs five-level transistor clamped H-bridge (TCHB) inverter which required significantly fewer number of semiconductor switches and fewer isolated DC sources than the conventional cascaded H-bridge inverter. As a result, system cost was largely reduced considering the high price of WBG devices in the present market. The semiconductor switches operated at carrier frequency were configured as Silicon Carbide (SiC) devices to improve the inverter efficiency, while the switches operated at fundamental output frequency (i.e., grid frequency) were constituted by Silicon (Si) IGBT devices. Different modulation strategies and control methods were developed and compared. In other words, this proposed SiC+Si hybrid TCHB inverter provided a solution to ride through a load short-circuit fault. Another special power electronic, multiport converter, was designed for EV charging station integrated with PV power generation and battery energy storage system. The control scheme for different charging modes was carefully developed to improve stabilization including power gap balancing, peak shaving, and valley filling, and voltage sag compensation. As a result, the influence on the power grid was reduced due to the matching between daily charging demand and adequate daytime PV generation. For special machine drives, such as slotless and coreless machines with low inductance, low core losses, typical drive implementations using conventional silicon-based devices are performance limited and also produce large current and torque ripples. In this research, WBG devices were employed to increase inverter switching frequency, reduce current ripple, reduce filter size, and as a result reduce drive system cost. Two inverter drive configurations were proposed and implemented with WBG devices in order to mitigate such issues for 2-phase very low inductance machines. Two inverter topologies, i.e., a dual H-bridge inverter with maximum redundancy and survivability and a 3-leg inverter for reduced cost, were considered. Simulation and experimental results validated the drive configurations in this dissertation. An integrated AC/AC converter was developed for 2-phase motor drives. Additionally, the proposed integrated AC/AC converter was systematically compared with commonly used topologies including AC/DC/AC converter and matrix converters, in terms of the output voltage/current capability, total harmonics distortion (THD), and system cost. Furthermore, closed-loop speed controllers were developed for the three topologies, and the maximum operating range and output phase currents were investigated. The proposed integrated AC/AC converter with a single-phase input and a 2-phase output reduced the switch count to six and resulting in minimized system cost and size for low power applications. In contrast, AC/DC/AC pulse width modulation (PWM) converters contained twelve active power semiconductor switches and a common DC link. Furthermore, a modulation scheme and filters for the proposed converter were developed and modeled in detail. For the significantly increased bearing current caused by the transition from Si devices to WBG devices, advanced modeling and analysis approach was proposed by using coupled field-circuit electromagnetic finite element analysis (FEA) to model bearing voltage and current in electric machines, which took into account the influence of distributed winding conductors and frequency-dependent winding RL parameters. Possible bearing current issues in axial-flux machines, and possibilities of computation time reduction, were also discussed. Two experimental validation approaches were proposed: the time-domain analysis approach to accurately capture the time transient, the stationary testing approach to measure bearing capacitance without complex control development or loading condition limitations. In addition, two types of motors were employed for experimental validation: an inside-out N-type PMSM was used for rotating testing and stationary testing, and an N-type BLDC was used for stationary testing. Possible solutions for the increased CMV and bearing currents caused by the implementation of WGB devices were discussed and developed in simulation validation, including multi-carrier SPWM modulation and H-8 converter topology

    Implementation and Analysis of Direct Torque Control for Permanent Magnet Synchronous Motor Using Gallium Nitride based Inverter

    Get PDF
    Permanent magnet synchronous machines (PMSMs) attract considerable attention in various industrial applications, such as electric and hybrid electric vehicles, due to their high efficiency and high-power density. In this thesis, the mathematical model of PMSM and two popular control strategies, field-oriented control (FOC) and direct torque control (DTC), are analyzed and compared. The results demonstrated that the DTC has better dynamic response in comparison to FOC. Moreover, DTC can eliminate the use of position sensor, which will save the cost of the PMSM drive system. Therefore, this thesis focuses on the design and implementation of high-performance DTC for PMSMs with a Gallium Nitride (GaN) based high switching frequency motor drive. First, the characteristics and operation principles of a PMSM are introduced. Then, the mathematical models of a PMSM under different coordinate systems are investigated. Consequently, a PMSM model is developed based on the dq rotating reference frame and implemented in the MATLAB/Simulink for validation. Two advanced PMSM control strategies, FOC and DTC, are investigated and compared in terms of control performance through comprehensive simulation studies and the results demonstrate that DTC has better dynamic performance. Conventional DTC contributes to higher torque ripple in the PMSM due to the limited switching frequency in a conventional semiconductor-based motor drive, which inevitably deteriorates the drive performance. Therefore, this thesis aims to reduce the torque ripple in the DTC based PMSM drive by using the new generation wide bandgap switching devices. More specifically, DTC is improved by using the optimized space vector pulse width modulation strategy and a higher switching frequency contributed by the GaN based motor drive. Finally, the proposed DTC-SVM based PMSM control strategy is implemented on the digital signal processor (DSP) and evaluated on the laboratory GaN based PMSM drive. Both the simulation and experimental results show that the proposed improvement in the DTC can further improve the PMSM drive performance

    High Frequency Injection Sensorless Control for a Permanent Magnet Synchronous Machine Driven by an FPGA Controlled SiC Inverter

    Get PDF
    As motor drive inverters continue to employ Silicon Carbide (SiC) and Gallium Nitride (GaN) devices for power density improvements, sensorless motor control strategies can be developed with field-programmable gate arrays (FPGA) to take advantage of high inverter switching frequencies. Through the FPGA’s parallel processing capabilities, a high control bandwidth sensorless control algorithm can be employed. Sensorless motor control offers cost reductions through the elimination of mechanical position sensors or more reliable electric drive systems by providing additional position and speed information of the electric motor. Back electromotive force (EMF) estimation or model-based methods used for motor control provide precise sensorless control at high speeds; however, they are unreliable at low speeds. High frequency injection (HFI) sensorless control demonstrates an improvement at low speeds through magnetic saliency tracking. In this work, a sinusoidal and square-wave high frequency injection sensorless control method is utilized to examine the impact an interior permanent magnet synchronous machine’s (IPMSM) fundamental frequency, injection frequency, and switching frequency have on the audible noise spectrum and electrical angle estimation. The audible noise and electrical angle estimation are evaluated at different injection voltages, injection frequencies, switching frequencies, and rotor speeds. Furthermore, a proposed strategy for selecting the proper injection frequency, injection voltage, and switching frequency is given to minimize the electrical angle estimation error

    Wide Band Gap Devices and Their Application in Power Electronics

    Get PDF
    Power electronic systems have a great impact on modern society. Their applications target a more sustainable future by minimizing the negative impacts of industrialization on the environment, such as global warming effects and greenhouse gas emission. Power devices based on wide band gap (WBG) material have the potential to deliver a paradigm shift in regard to energy efficiency and working with respect to the devices based on mature silicon (Si). Gallium nitride (GaN) and silicon carbide (SiC) have been treated as one of the most promising WBG materials that allow the performance limits of matured Si switching devices to be significantly exceeded. WBG-based power devices enable fast switching with lower power losses at higher switching frequency and hence, allow the development of high power density and high efficiency power converters. This paper reviews popular SiC and GaN power devices, discusses the associated merits and challenges, and finally their applications in power electronics

    Industrial and Technological Applications of Power Electronics Systems

    Get PDF
    The Special Issue "Industrial and Technological Applications of Power Electronics Systems" focuses on: - new strategies of control for electric machines, including sensorless control and fault diagnosis; - existing and emerging industrial applications of GaN and SiC-based converters; - modern methods for electromagnetic compatibility. The book covers topics such as control systems, fault diagnosis, converters, inverters, and electromagnetic interference in power electronics systems. The Special Issue includes 19 scientific papers by industry experts and worldwide professors in the area of electrical engineering

    Cost-Effective and High-Efficiency Variable-Speed Switched Reluctance Drives With Ring-Connected Winding Configuration

    Get PDF
    This paper presents a novel converter topology for six-phase switched reluctance motor (SRM) drives, which reduces the number of switches and diodes by half, compared with the conventional asymmetric half-bridge converter, but needs no additional energy storage component. A dynamic model of a six-phase SRM is developed in the MATLAB/SIMULINK environment and conventional current chopping and angle position control techniques are applied to the proposed converter, demonstrating successful operation across the full speed range with modified conventional control techniques, lower converter losses, and higher system efficiency compared with the asymmetric half-bridge converter. Experimental tests comparing two versions of the proposed converter with an asymmetric half-bridge are described and verify the predictions of the simulations

    Integrated DC-DC Charger Powertrain Converter Design for Electric Vehicles Using Wide Bandgap Semiconductors

    Get PDF
    Electric vehicles (EVs) adoption is growing due to environmental concerns, government subsidies, and cheaper battery packs. The main power electronics design challenges for next-generation EV power converters are power converter weight, volume, cost, and loss reduction. In conventional EVs, the traction boost and the onboard charger (OBC) have separate power modules, passives, and heat sinks. An integrated converter, combining and re-using some charging and powertrain components together, can reduce converter cost, volume, and weight. However, efficiency is often reduced to obtain the advantage of cost, volume, and weight reduction.An integrated converter topology is proposed to combine the functionality of the traction boost converter and isolated DC-DC converter of the OBC using a hybrid transformer where the same core is used for both converters. The reconfiguration between charging and traction operation is performed by the existing Battery Management System (BMS) contactors. The proposed converter is operated in both boost and dual active bridge (DAB) mode during traction operation. The loss mechanisms of the proposed integrated converter are modeled for different operating modes for design optimization. An aggregated drive cycle is considered for optimizing the integrated converter design parameters to reduce energy loss during traction operation, weight, and cost. By operating the integrated converter in DAB mode at light-load and boost mode at high-speed heavy-load, the traction efficiency is improved. An online mode transition algorithm is also developed to ensure stable output voltage and eliminate current oscillation during the mode transition. A high-power prototype is developed to verify the integrated converter functionality, validate the loss model, and demonstrate the online transition algorithm. An automated closed-loop controller is developed to implement the transition algorithm which can automatically make the transition between modes based on embedded efficiency mapping. The closed-loop control system also regulates the integrated converter output voltage to improve the overall traction efficiency of the integrated converter. Using the targeted design approach, the proposed integrated converter performs better in all three aspects including efficiency, weight, and cost than comparable discrete solutions for each converter

    Applications of Power Electronics:Volume 1

    Get PDF

    Optimisation of High Reliability Integrated Motor Drives

    Get PDF
    The development of integrated motor drives (IMDs) with high volumetric power density and reliability are crucial for the continued development and adoption of electric vehicles (EV). The development of the wide bandgap (WBG) devices, especially Silicon Carbide (SiC) MOSFETs, enables new possibilities for traction drive systems. However, to maximise the benefits of SiC, the IMD design process, including passive component selection, control and thermal management should be optimised. This thesis goes through the initial major design steps in SiC power system design, from SiC device analysis and modelling to circuit design and electrothermal simulation of an IMD system. A novel approach to discrete SiC MOSFET selection, using a method of calculating performance based on experimental data, is described. Dynamic behaviour of a family of 1200 V MOSFETs is studied at temperatures up to 175 °C using a double pulse test to show the combined effect of the differences in internal design between MOSFETs with different current ratings. It is observed that the 30 mΩ MOSFET had a 24 % higher switching loss than a 140 mΩ at a 30 A load current. The study then goes on to compare the effect of switching frequency, paralleling of MOSFETs and the device type used to demonstrate the inverter design with the lowest power losses, which will equate to low temperatures and high lifetime. The novel methodology can find the optimal choice of MOSFET from the family, and number required through paralleling, for a circuit when given the load current, temperature and switching. Understanding the device interdependencies in a single family is utilised to also predict the relative performance between SiC MOSFETs from different manufacturers. An axial-flux permanent magnet synchronous motor (PMSM) driven by a three-phase SiC inverter is simulated in PLECS using experimentally validated MOSFET models chosen by the device selection methodology. Electrothermal analysis shows the influence of switching frequency, temperature, MOSFETs paralleling and DC-link capacitance on voltage ripple, total harmonic distortion, efficiency and MOSFET loss and temperature profiles. With a 60 % decrease in THD and 50 % increase in maximum MOSFET junction temperature when switching frequency is increased from 10 to 100 kHz. The high-temperature stress on the semiconductors due to close proximity with the ma- chine stator means reliability is an important consideration that is yet to be fully investigated in IMD optimisations. This study uses a lifetime model specific to the transistor package TO-247 in reliability optimisation for IMD for the first time. It requires detailed MOSFET simulation outputs to provide a highly accurate lifetime for discrete SiC MOSFETs. Both single and multi-objective optimisations of the volume and lifetime of the three- phase inverter are presented. The single objective optimisation demonstrates the minimum volume and the corresponding switching frequency and lifetime when between three and six MOSFETs are paralleled at a temperature range between 50 and 150 °C. Design constraints were set limiting the feasible switching frequency range to between 13 kHz because of THD and 118 kHz because of efficiency limits, corresponding to required DC-link capacitors of 520 and 55 μF respectively. Increases in temperature were found to further limit the maximum switching frequency and therefore increase the minimum volume of the inverter. A Pareto front identifies a range of possible solutions for the volume and lifetime of an inverter with six paralleled MOSFETs through the multi-objective objective procedure. Further analysis of these possible solutions identified a single optimal solution for the system, using a DC-link capacitance of 190 μF at 45 kHz, giving a combined volume of the capacitor and MOSFETs of 440 cm3 and a lifetime of 12,000 hours. Finally, the electrothermal analysis of a dual inverter driving a symmetric six-phase PMSM is presented with the benefits of modular multi-phase systems in IMDs summarised. Effect on performance of lower per-phase current, interleaving strategies and fault tolerance are analysed and compared to equivalent three-phase systems, for 60 kW and 120 kW operation. A novel method for lifetime prediction of systems with paralleled MOSFETs or fault tolerance capabilities considering incremental damage is developed based on TO-247 lifetime calculations from PLECS simulation, and component-level reliability profiles using Monte Carlo analysis. The dual inverter is used to model the system and implements control schemes for both single-phase and single inverter failure while maintaining the 4000 rpm and 140 Nm speed and torque requirements. A twofold increase in B10 lifetime of is observed when the effect of paralleled SiC MOSFETs prevents immediate system failure in a three-phase inverter. A computational fluid dynamics (CFD) and 3D finite element thermal model are designed to study the inverter behaviour based on the thermal analysis of its shared cooling plate with a 300 mm diameter axial flux PMSM. Concentric layout designs minimise the variation of junction temperatures to 5 °C and the effect of the flow rate and temperature of the coolant in the PMSM cold plate is presented between 5 and 30 l/min. The multi-objective optimisation procedure used to compare the dual inverter demonstrated it outperformed the three-phase inverter with 15 % smaller required DC-link capacitance, higher efficiency and increased lifetime in part due to its fault-tolerant nature. The optimal dual inverter considering the design constraints consists of four 40 μF KEMET film capacitors operating with a switching frequency of 46 kHz giving an inverter volume of 300 cm3 and a lifetime of 16.3 years, assuming 1000 hours of operation annually

    POWER QUALITY CONTROL AND COMMON-MODE NOISE MITIGATION FOR INVERTERS IN ELECTRIC VEHICLES

    Get PDF
    Inverters are widely utilized in electric vehicle (EV) applications as a major voltage/current source for onboard battery chargers (OBC) and motor drive systems. The inverter performance is critical to the efficiency of EV system energy conversion and electronics system electro-magnetic interference (EMI) design. However, for AC systems, the bandwidth requirement is usually low compared with DC systems, and the control impact on the inverter differential-mode (DM) and common-mode (CM) performance are not well investigated. With the wide-band gap (WBG) device era, the switching capability of power electronics devices drastically improved. The DM/CM impact that was brought by the WBG device-based inverter becomes more serious and has not been completely understood. This thesis provides an in-depth analysis of on-board inverter control strategies and the corresponding DM/CM impact on the EV system. The OBC inverter control under vehicle-to-load (V2L) mode will be documented first. A virtual resistance damping method minimizes the nonlinear load harmonics, and a neutral balancing method regulates the unbalanced load impact through the fourth leg. In the motor drive system, a generalized CM voltage analytical model and a current ripple prediction model are built for understanding the system CM and DM stress with respect to different modulation methods, covering both 2-level and 3-level topologies. A novel CM EMI damping modulation scheme is proposed for 6-phase inverter applications. The performance comparison between the proposed methods and the conventional solution is carried out. Each topic is supported by the corresponding hardware platform and experimental validation
    • …
    corecore