5 research outputs found

    Bicyclist Longitudinal Motion Modeling

    Get PDF
    69A43551747123Bike is a promising, human-powered, and emission-free transportation mode that is being increasingly advocated as a sustainable mode of transportation due to its significant positive impacts on congestion and the environment. Cities in the United States have experienced a rapid increase in bicycle ridership over the past decade. However, despite the growing popularity of bicycles for short-distance commuting and even for mid-distance recreational trips, researchers have generally ignored the investigation of bicycle traffic flow dynamics. Due to the shared space and frequent interactions among heterogeneous road users, bicycle flow dynamics should be evaluated to determine the tendency of lateral dispersion and its effects on traffic efficiency and safety. Therefore, this research effort proposes to model bicyclist longitudinal motion while accounting for bicycle interactions using vehicular traffic flow techniques. From the comparison of different states of motion for these two transport modes, the authors assumed there is no major difference between vehicular and bicyclist traffic characteristics. The study revamps the Fadhloun-Rakha car-following model previously developed by the research team to make it representative of bicycle traffic flow dynamics. The possibility of capturing cyclists\u2019 behaviors through revamping certain aspects of existing car-following models is investigated. Accordingly, 33 participants were recruited to ride the bike simulator and drive the car simulator simultaneously. The participants were recruited to operate a bike-simulator in order to test the proposed model under realistic traffic conditions and verify the output of the proposed model formulation remains valid when bicyclists are operating under realistic traffic conditions. Both simulators were integrated together, and each participant could inform about the location of another participant in the simulation interval. Six scenarios based on the initial position of the bike and car were developed. Based on the collected data, the Fadhloun-Rakha model was validated to ensure the development of a good descriptor for speed and acceleration and deceleration behaviors. A reliable sample including 100 model parameters values was selected. Root Mean Square Error (RMSE) for the mentioned sample was obtained, and the smallest RMSE in each scenario was identified. Using the obtained RMSEs, the speed and acceleration trajectories for the smallest RMSE in each scenario were drawn. Eventually, the optimal values of the model parameters (a,b,d) in each scenario were specified
    corecore