128 research outputs found

    Adaptive Prioritized Random Linear Coding and Scheduling for Layered Data Delivery From Multiple Servers

    Get PDF
    In this paper, we deal with the problem of jointly determining the optimal coding strategy and the scheduling decisions when receivers obtain layered data from multiple servers. The layered data is encoded by means of prioritized random linear coding (PRLC) in order to be resilient to channel loss while respecting the unequal levels of importance in the data, and data blocks are transmitted simultaneously in order to reduce decoding delays and improve the delivery performance. We formulate the optimal coding and scheduling decisions problem in our novel framework with the help of Markov decision processes (MDP), which are effective tools for modeling adapting streaming systems. Reinforcement learning approaches are then proposed to derive reduced computational complexity solutions to the adaptive coding and scheduling problems. The novel reinforcement learning approaches and the MDP solution are examined in an illustrative example for scalable video transmission . Our methods offer large performance gains over competing methods that deliver the data blocks sequentially. The experimental evaluation also shows that our novel algorithms offer continuous playback and guarantee small quality variations which is not the case for baseline solutions. Finally, our work highlights the advantages of reinforcement learning algorithms to forecast the temporal evolution of data demands and to decide the optimal coding and scheduling decisions

    Fault localization in service-based systems hosted in mobile ad hoc networks

    Get PDF
    Fault localization in general refers to a technique for identifying the likely root causes of failures observed in systems formed from components. Fault localization in systems deployed on mobile ad hoc networks (MANETs) is a particularly challenging task because those systems are subject to a wider variety and higher incidence of faults than those deployed in fixed networks, the resources available to track fault symptoms are severely limited, and many of the sources of faults in MANETs are by their nature transient. We present a suite of three methods, each responsible for part of the overall task of localizing the faults occurring in service-based systems hosted on MANETs. First, we describe a dependence discovery method, designed specifically for this environment, yielding dynamic snapshots of dependence relationships discovered through decentralized observations of service interactions. Next, we present a method for localizing the faults occurring in service-based systems hosted on MANETs. We employ both Bayesian and timing-based reasoning techniques to analyze the dependence data produced by the dependence discovery method in the context of a specific fault propagation model, deriving a ranked list of candidate fault locations. In the third method, we present an epidemic protocol designed for transferring the dependence and symptom data between nodes of MANET networks with low connectivity. The protocol creates network wide synchronization overlay and transfers the data over intermediate nodes in periodic synchronization cycles. We introduce a new tool for simulation of service-based systems hosted on MANETs and use the tool for evaluation of several operational aspects of the methods. Next, we present implementation of the methods in Java EE and use emulation environment to evaluate the methods. We present the results of an extensive set of experiments exploring a wide range of operational conditions to evaluate the accuracy and performance of our methods.Open Acces

    Cross-layer design of multi-hop wireless networks

    Get PDF
    MULTI -hop wireless networks are usually defined as a collection of nodes equipped with radio transmitters, which not only have the capability to communicate each other in a multi-hop fashion, but also to route each others’ data packets. The distributed nature of such networks makes them suitable for a variety of applications where there are no assumed reliable central entities, or controllers, and may significantly improve the scalability issues of conventional single-hop wireless networks. This Ph.D. dissertation mainly investigates two aspects of the research issues related to the efficient multi-hop wireless networks design, namely: (a) network protocols and (b) network management, both in cross-layer design paradigms to ensure the notion of service quality, such as quality of service (QoS) in wireless mesh networks (WMNs) for backhaul applications and quality of information (QoI) in wireless sensor networks (WSNs) for sensing tasks. Throughout the presentation of this Ph.D. dissertation, different network settings are used as illustrative examples, however the proposed algorithms, methodologies, protocols, and models are not restricted in the considered networks, but rather have wide applicability. First, this dissertation proposes a cross-layer design framework integrating a distributed proportional-fair scheduler and a QoS routing algorithm, while using WMNs as an illustrative example. The proposed approach has significant performance gain compared with other network protocols. Second, this dissertation proposes a generic admission control methodology for any packet network, wired and wireless, by modeling the network as a black box, and using a generic mathematical 0. Abstract 3 function and Taylor expansion to capture the admission impact. Third, this dissertation further enhances the previous designs by proposing a negotiation process, to bridge the applications’ service quality demands and the resource management, while using WSNs as an illustrative example. This approach allows the negotiation among different service classes and WSN resource allocations to reach the optimal operational status. Finally, the guarantees of the service quality are extended to the environment of multiple, disconnected, mobile subnetworks, where the question of how to maintain communications using dynamically controlled, unmanned data ferries is investigated

    Advanced receivers for distributed cooperation in mobile ad hoc networks

    Get PDF
    Mobile ad hoc networks (MANETs) are rapidly deployable wireless communications systems, operating with minimal coordination in order to avoid spectral efficiency losses caused by overhead. Cooperative transmission schemes are attractive for MANETs, but the distributed nature of such protocols comes with an increased level of interference, whose impact is further amplified by the need to push the limits of energy and spectral efficiency. Hence, the impact of interference has to be mitigated through with the use PHY layer signal processing algorithms with reasonable computational complexity. Recent advances in iterative digital receiver design techniques exploit approximate Bayesian inference and derivative message passing techniques to improve the capabilities of well-established turbo detectors. In particular, expectation propagation (EP) is a flexible technique which offers attractive complexity-performance trade-offs in situations where conventional belief propagation is limited by computational complexity. Moreover, thanks to emerging techniques in deep learning, such iterative structures are cast into deep detection networks, where learning the algorithmic hyper-parameters further improves receiver performance. In this thesis, EP-based finite-impulse response decision feedback equalizers are designed, and they achieve significant improvements, especially in high spectral efficiency applications, over more conventional turbo-equalization techniques, while having the advantage of being asymptotically predictable. A framework for designing frequency-domain EP-based receivers is proposed, in order to obtain detection architectures with low computational complexity. This framework is theoretically and numerically analysed with a focus on channel equalization, and then it is also extended to handle detection for time-varying channels and multiple-antenna systems. The design of multiple-user detectors and the impact of channel estimation are also explored to understand the capabilities and limits of this framework. Finally, a finite-length performance prediction method is presented for carrying out link abstraction for the EP-based frequency domain equalizer. The impact of accurate physical layer modelling is evaluated in the context of cooperative broadcasting in tactical MANETs, thanks to a flexible MAC-level simulato

    Mobile Ad-Hoc Networks

    Get PDF
    Being infrastructure-less and without central administration control, wireless ad-hoc networking is playing a more and more important role in extending the coverage of traditional wireless infrastructure (cellular networks, wireless LAN, etc). This book includes state-of-the-art techniques and solutions for wireless ad-hoc networks. It focuses on the following topics in ad-hoc networks: quality-of-service and video communication, routing protocol and cross-layer design. A few interesting problems about security and delay-tolerant networks are also discussed. This book is targeted to provide network engineers and researchers with design guidelines for large scale wireless ad hoc networks

    Approximating optimal Broadcast in Wireless Mesh Networks with Machine Learning

    Get PDF
    With the growth of IoT, efficient broadcast is required for many applications. Yet, current protocols use primitive mechanisms based on heuristics. Multi-agent reinforcement learning is applied to approximate optimal broadcast in Wireless Mesh Networks. One of the proposed fully distributed algorithms, using Bayesian Neural Networks, outperforms MORE multicast and BATMAN, improving airtime up to 20%, e2e delay up to 30%, and satisfying timeout constraints in over the 97% of the cases

    Performance metrics and routing in vehicular ad hoc networks

    Get PDF
    The aim of this thesis is to propose a method for enhancing the performance of Vehicular Ad hoc Networks (VANETs). The focus is on a routing protocol where performance metrics are used to inform the routing decisions made. The thesis begins by analysing routing protocols in a random mobility scenario with a wide range of node densities. A Cellular Automata algorithm is subsequently applied in order to create a mobility model of a highway, and wide range of density and transmission range are tested. Performance metrics are introduced to assist the prediction of likely route failure. The Good Link Availability (GLA) and Good Route Availability (GRA) metrics are proposed which can be used for a pre-emptive action that has the potential to give better performance. The implementation framework for this method using the AODV routing protocol is also discussed. The main outcomes of this research can be summarised as identifying and formulating methods for pre-emptive actions using a Cellular Automata with NS-2 to simulate VANETs, and the implementation method within the AODV routing protocol

    Artificial immune system based security algorithm for mobile ad hoc networks

    Get PDF
    Securing Mobile Ad hoc Networks (MANET) that are a collection of mobile, decentralized, and self-organized nodes is a challenging task. The most fundamental aspect of a MANET is its lack of infrastructure, and most design issues and challenges stem from this characteristic. The lack of a centralized control mechanism brings added difficulty in fault detection and correction. The dynamically changing nature of mobile nodes causes the formation of an unpredictable topology. This varying topology causes frequent traffic routing changes, network partitioning and packet losses. The various attacks that can be carried out on MANETs challenge the security capabilities of the mobile wireless network in which nodes can join, leave and move dynamically. The Human Immune System (HIS) provides a foundation upon which Artificial Immune algorithms are based. The algorithms can be used to secure both host-based and network-based systems. However, it is not only important to utilize the HIS during the development of Artificial Immune System (AIS) based algorithms as much as it is important to introduce an algorithm with high performance. Therefore, creating a balance between utilizing HIS and AIS-based intrusion detection algorithms is a crucial issue that is important to investigate. The immune system is a key to the defence of a host against foreign objects or pathogens. Proper functioning of the immune system is necessary to maintain host homeostasis. The cells that play a fundamental role in this defence process are known as Dendritic Cells (DC). The AIS based Dendritic Cell Algorithm is widely known for its large number of applications and well established in the literature. The dynamic, distributed topology of a MANET provides many challenges, including decentralized infrastructure wherein each node can act as a host, router and relay for traffic. MANETs are a suitable solution for distributed regional, military and emergency networks. MANETs do not utilize fixed infrastructure except where a connection to a carrier network is required, and MANET nodes provide the transmission capability to receive, transmit and route traffic from a sender node to the destination node. In the HIS, cells can distinguish between a range of issues including foreign body attacks as well as cellular senescence. The primary purpose of this research is to improve the security of MANET using the AIS framework. This research presents a new defence approach using AIS which mimics the strategy of the HIS combined with Danger Theory. The proposed framework is known as the Artificial Immune System based Security Algorithm (AISBA). This research also modelled participating nodes as a DC and proposed various signals to indicate the MANET communications state. Two trust models were introduced based on AIS signals and effective communication. The trust models proposed in this research helped to distinguish between a “good node” as well as a “selfish node”. A new MANET security attack was identified titled the Packet Storage Time attack wherein the attacker node modifies its queue time to make the packets stay longer than necessary and then circulates stale packets in the network. This attack is detected using the proposed AISBA. This research, performed extensive simulations with results to support the effectiveness of the proposed framework, and statistical analysis was done which showed the false positive and false negative probability falls below 5%. Finally, two variations of the AISBA were proposed and investigated, including the Grudger based Artificial Immune System Algorithm - to stimulate selfish nodes to cooperate for the benefit of the MANET and Pain reduction based Artificial Immune System Algorithm - to model Pain analogous to HIS
    • …
    corecore