6,724 research outputs found

    Preserving the Quality of Architectural Tactics in Source Code

    Get PDF
    In any complex software system, strong interdependencies exist between requirements and software architecture. Requirements drive architectural choices while also being constrained by the existing architecture and by what is economically feasible. This makes it advisable to concurrently specify the requirements, to devise and compare alternative architectural design solutions, and ultimately to make a series of design decisions in order to satisfy each of the quality concerns. Unfortunately, anecdotal evidence has shown that architectural knowledge tends to be tacit in nature, stored in the heads of people, and lost over time. Therefore, developers often lack comprehensive knowledge of underlying architectural design decisions and inadvertently degrade the quality of the architecture while performing maintenance activities. In practice, this problem can be addressed through preserving the relationships between the requirements, architectural design decisions and their implementations in the source code, and then using this information to keep developers aware of critical architectural aspects of the code. This dissertation presents a novel approach that utilizes machine learning techniques to recover and preserve the relationships between architecturally significant requirements, architectural decisions and their realizations in the implemented code. Our approach for recovering architectural decisions includes the two primary stages of training and classification. In the first stage, the classifier is trained using code snippets of different architectural decisions collected from various software systems. During this phase, the classifier learns the terms that developers typically use to implement each architectural decision. These ``indicator terms\u27\u27 represent method names, variable names, comments, or the development APIs that developers inevitably use to implement various architectural decisions. A probabilistic weight is then computed for each potential indicator term with respect to each type of architectural decision. The weight estimates how strongly an indicator term represents a specific architectural tactics/decisions. For example, a term such as \emph{pulse} is highly representative of the heartbeat tactic but occurs infrequently in the authentication. After learning the indicator terms, the classifier can compute the likelihood that any given source file implements a specific architectural decision. The classifier was evaluated through several different experiments including classical cross-validation over code snippets of 50 open source projects and on the entire source code of a large scale software system. Results showed that classifier can reliably recognize a wide range of architectural decisions. The technique introduced in this dissertation is used to develop the Archie tool suite. Archie is a plug-in for Eclipse and is designed to detect wide range of architectural design decisions in the code and to protect them from potential degradation during maintenance activities. It has several features for performing change impact analysis of architectural concerns at both the code and design level and proactively keep developers informed of underlying architectural decisions during maintenance activities. Archie is at the stage of technology transfer at the US Department of Homeland Security where it is purely used to detect and monitor security choices. Furthermore, this outcome is integrated into the Department of Homeland Security\u27s Software Assurance Market Place (SWAMP) to advance research and development of secure software systems

    Accessible user interface support for multi-device ubiquitous applications: architectural modifiability considerations

    Get PDF
    The market for personal computing devices is rapidly expanding from PC, to mobile, home entertainment systems, and even the automotive industry. When developing software targeting such ubiquitous devices, the balance between development costs and market coverage has turned out to be a challenging issue. With the rise of Web technology and the Internet of things, ubiquitous applications have become a reality. Nonetheless, the diversity of presentation and interaction modalities still drastically limit the number of targetable devices and the accessibility toward end users. This paper presents webinos, a multi-device application middleware platform founded on the Future Internet infrastructure. Hereto, the platform's architectural modifiability considerations are described and evaluated as a generic enabler for supporting applications, which are executed in ubiquitous computing environments

    What to Fix? Distinguishing between design and non-design rules in automated tools

    Full text link
    Technical debt---design shortcuts taken to optimize for delivery speed---is a critical part of long-term software costs. Consequently, automatically detecting technical debt is a high priority for software practitioners. Software quality tool vendors have responded to this need by positioning their tools to detect and manage technical debt. While these tools bundle a number of rules, it is hard for users to understand which rules identify design issues, as opposed to syntactic quality. This is important, since previous studies have revealed the most significant technical debt is related to design issues. Other research has focused on comparing these tools on open source projects, but these comparisons have not looked at whether the rules were relevant to design. We conducted an empirical study using a structured categorization approach, and manually classify 466 software quality rules from three industry tools---CAST, SonarQube, and NDepend. We found that most of these rules were easily labeled as either not design (55%) or design (19%). The remainder (26%) resulted in disagreements among the labelers. Our results are a first step in formalizing a definition of a design rule, in order to support automatic detection.Comment: Long version of accepted short paper at International Conference on Software Architecture 2017 (Gothenburg, SE

    Software Evolution for Industrial Automation Systems. Literature Overview

    Get PDF

    Energy-Efficient Software

    Get PDF
    The energy consumption of ICT is growing at an unprecedented pace. The main drivers for this growth are the widespread diffusion of mobile devices and the proliferation of datacenters, the most power-hungry IT facilities. In addition, it is predicted that the demand for ICT technologies and services will increase in the coming years. Finding solutions to decrease ICT energy footprint is and will be a top priority for researchers and professionals in the field. As a matter of fact, hardware technology has substantially improved throughout the years: modern ICT devices are definitely more energy efficient than their predecessors, in terms of performance per watt. However, as recent studies show, these improvements are not effectively reducing the growth rate of ICT energy consumption. This suggests that these devices are not used in an energy-efficient way. Hence, we have to look at software. Modern software applications are not designed and implemented with energy efficiency in mind. As hardware became more and more powerful (and cheaper), software developers were not concerned anymore with optimizing resource usage. Rather, they focused on providing additional features, adding layers of abstraction and complexity to their products. This ultimately resulted in bloated, slow software applications that waste hardware resources -- and consequently, energy. In this dissertation, the relationship between software behavior and hardware energy consumption is explored in detail. For this purpose, the abstraction levels of software are traversed upwards, from source code to architectural components. Empirical research methods and evidence-based software engineering approaches serve as a basis. First of all, this dissertation shows the relevance of software over energy consumption. Secondly, it gives examples of best practices and tactics that can be adopted to improve software energy efficiency, or design energy-efficient software from scratch. Finally, this knowledge is synthesized in a conceptual framework that gives the reader an overview of possible strategies for software energy efficiency, along with examples and suggestions for future research

    Capturing Software Architecture Knowledge for Pattern-Driven Design

    Get PDF
    Context: Software architecture is a knowledge-intensive field. One mechanism for storing architecture knowledge is the recognition and description of architectural patterns. Selecting architectural patterns is a challenging task for software architects, as knowledge about these patterns is scattered among a wide range of literature. Method: We report on a systematic literature review, with the aim of building a decision model for the architectural pattern selection problem. Moreover, twelve experienced practitioners at software-producing organizations evaluated the usability and usefulness of the extracted knowledge.\newline Results: An overview is provided of 29 patterns and their effects on 40 quality attributes. Furthermore, we report in which systems the 29 patterns are applied and in which combinations. The practitioners confirmed that architectural knowledge supports software architects with their decision-making process to select a set of patterns for a new problem. We investigate the potential trends among architects to select patterns. Conclusion: With the knowledge available, architects can more rapidly select and eliminate combinations of patterns to design solutions. Having this knowledge readily available supports software architects in making more efficient and effective design decisions that meet their quality concerns

    Mining Architectural Information: A Systematic Mapping Study

    Full text link
    Context: Mining Software Repositories (MSR) has become an essential activity in software development. Mining architectural information to support architecting activities, such as architecture understanding and recovery, has received a significant attention in recent years. However, there is an absence of a comprehensive understanding of the state of research on mining architectural information. Objective: This work aims to identify, analyze, and synthesize the literature on mining architectural information in software repositories in terms of architectural information and sources mined, architecting activities supported, approaches and tools used, and challenges faced. Method: A Systematic Mapping Study (SMS) has been conducted on the literature published between January 2006 and November 2021. Results: Of the 79 primary studies finally selected, 8 categories of architectural information have been mined, among which architectural description is the most mined architectural information; 12 architecting activities can be supported by the mined architectural information, among which architecture understanding is the most supported activity; 81 approaches and 52 tools were proposed and employed in mining architectural information; and 4 types of challenges in mining architectural information were identified. Conclusions: This SMS provides researchers with promising future directions and help practitioners be aware of what approaches and tools can be used to mine what architectural information from what sources to support various architecting activities.Comment: 68 pages, 5 images, 15 tables, Manuscript submitted to a Journal (2022
    corecore