807 research outputs found

    Origins of the midlatitude Pacific decadal variability

    Get PDF
    Analysis of multiple climate simulations shows much of the midlatitude Pacific decadal variability to be composed of two simultaneously occurring elements: One is a stochastically driven, passive ocean response to the atmosphere while the other is oscillatory and represents a coupled mode of the ocean‐atmosphere system. ENSO processes are not required to explain the origins of the decadal variability. The stochastic variability is driven by random variations in wind stress and heat flux associated with internal atmospheric variability but amplified by a factor of 2 by interactions with the ocean. We also found a coupled mode of the ocean‐atmosphere system, characterized by a significant power spectral peak near 1 cycle/20 years in the region of the midlatitude North Pacific and Kuroshio Extension. Ocean dynamics appear to play a critical role in this coupled air/sea mode

    Regulation of South China Sea throughflow by pressure difference

    Get PDF
    Author Posting. © American Geophysical Union, 2016. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 121 (2016): 4077–4096, doi:10.1002/2015JC011177.Sea Surface Height (SSH) data from the European Centre for Medium-Range Weather Forecasts-Ocean Reanalysis System 4 (ECMWF-ORAS4) are used to determine the pressure difference in connection with variability of the South China Sea ThroughFlow (SCSTF) from 1958 to 2007. Two branches of SCSTF, the Karimata-Sunda Strait ThroughFlow (KSSTF) and the Mindoro Strait ThroughFlow (MSTF), are examined. Using the ensemble empirical mode decomposition method (EEMD), time series of pressure difference and volume transport are decomposed into intrinsic mode functions and trend functions, with the corresponding variability on different time scales. Pressure difference agrees with the KSSTF volume transport on decadal time scale; while for the MSTF, pressure difference varies similarly with volume transport on interannual time scale. Separating the dynamic height difference into the thermal and haline terms, for the KSSTF more than half of the dynamic height difference (32 cm) is due to the thermal contributions; while the remaining dynamic height difference (23 cm) is due to the haline contributions. For the MSTF, the dynamic height difference (29 cm) is primarily due to the thermal contribution (26 cm).This work was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (grant XDA11010304), the National Natural Science Foundation of China (grant number 41306015 and 41476013) and the Independent Research Project Program of State Key Laboratory of Tropical Oceanography (grant LTOZZ1603).2016-12-1

    Intensification and poleward shift of subtropical western boundary currents in a warming climate

    Get PDF
    A significant increase in sea surface temperature (SST) is observed over the midlatitude western boundary currents (WBCs) during the past century. However, the mechanism for this phenomenon remains poorly understood due to limited observations. In the present paper, several coupled parameters (i.e., sea surface temperature (SST), ocean surface heat fluxes, ocean water velocity, ocean surface winds and sea level pressure (SLP)) are analyzed to identify the dynamic changes of the WBCs. Three types of independent data sets are used, including reanalysis products, satellite-blended observations. and climate model outputs from the fifth phase of the Climate Model Intercomparison Project (CMIP5). Based on these broad ranges of data, we find that the WBCs (except the Gulf Stream) are intensifying and shifting toward the poles as long-term effects of global warming. An intensification and poleward shift of near-surface ocean winds, attributed to positive annular mode-like trends, are proposed to be the forcing of such dynamic changes. In contrast to the other WBCs, the Gulf Stream is expected to be weaker under global warming, which is most likely related to a weakening of the Atlantic Meridional Overturning Circulation (AMOC). However, we also notice that the natural variations of WBCs might conceal the long-term effect of global warming in the available observational data sets, especially over the Northern Hemisphere. Therefore, long-term observations or proxy data are necessary to further evaluate the dynamics of the WBCs

    GLOBAL TRENDS IN EDDY KINETIC ENERGY FROM SATELLITE ALTIMETRY

    Get PDF
    The temporal changes in the oceanic eddy kinetic energy (EKE) including trends and variability are presented and the dynamical mechanisms are investigated. The domain is near-global with a focus on the North Atlantic, North Pacific and Southern Oceans. Altimeter-derived geostrophic surface velocities are used to compute an 18 year time series of EKE on a 1/3ïżœ grid. Linear trends are best-fit to the 18-year time series and their statistical significance assessed using bootstrap techniques. Near-global mean EKE trends are non-statistically significant. However, on a regional scale, statistically significant trends are found in all of the major ocean basins. Widespread negative trends occur primarily in the northern and southern subtropical Pacific as well as the central North Atlantic, while positive trends occur primarily in the North Atlantic subtropical gyre, much of the northeast North Atlantic, the southeast Indian Ocean and in several regions in the Southern Ocean. Buoyancy forcing and non-local wind forcing related to the PDO are significant in the North Pacific. In the North Atlantic, changes in wind stress curl as well as changes in local wind speed are implicated, where a di-polar pattern of correlations with the NAO is observed. In the Southern Ocean, changes in local and/or remote winds appear as the dominant mechanism south of 30ïżœS. On a global scale, EKE trends are slightly positive (0.15% of the mean per decade) but non-statistically significant. EKE has decreased in the northern hemisphere and increased in the southern hemisphere despite an increase in hemispheric mean wind speed in both northern and southern hemispheres. Changing wind speeds are influential across all the ocean basins but other mechanisms are significant including shifting wind stress curl fields, buoyancy forcing, indirect (non-local) winds and intrinsic variability. Statistically significant correlations between annual mean EKE and major modes of climate variability are evident in all the ocean basins

    Bjerknes-like Compensation in the Wintertime North Pacific

    Get PDF
    Observational and model evidence has been mounting that mesoscale eddies play an important role in air–sea interaction in the vicinity of western boundary currents and can affect the jet stream storm track. What is less clear is the interplay between oceanic and atmospheric meridional heat transport in the vicinity of western boundary currents. It is first shown that variability in the North Pacific, particularly in the Kuroshio Extension region, simulated by a high-resolution fully coupled version of the Community Earth System Model matches observations with similar mechanisms and phase relationships involved in the variability. The Pacific decadal oscillation (PDO) is correlated with sea surface height anomalies generated in the central Pacific that propagate west preceding Kuroshio Extension variability with a ~3–4-yr lag. It is then shown that there is a near compensation of O(0.1) PW (PW ≡ 10^(15) W) between wintertime atmospheric and oceanic meridional heat transport on decadal time scales in the North Pacific. This compensation has characteristics of Bjerknes compensation and is tied to the mesoscale eddy activity in the Kuroshio Extension region

    Ocean–atmosphere coupled Pacific Decadal variability simulated by a climate model

    Get PDF
    Currently, the mechanisms for Pacific Decadal Oscillation (PDO) are still disputed, and in particular the atmosphere response to the ocean in the mid-latitude remains a key uncertainty. In this study, we investigate two potential feedbacks—a local positive and a delayed negative—for the PDO based on a long-term control simulation using the ECHAM5/MPI-OM coupled model, which is selected because of reproduces well the variability of PDO. The positive feedback is as follows. In the PDO positive phase, the meridional sea surface temperature (SST) gradient is intensified and this strengthens the lower level atmospheric baroclinicity in the mid-latitudes, leading to the enhancement of Aleutian low and zonal wind. These atmospheric changes reinforce the meridional SST temperature gradient through the divergence of ocean surface currents. The increased heat flux loss over the anomalously warm water and decreased heat flux loss over the anomalously cold water in turn reinforce the lower atmospheric meridional temperature gradient, baroclinicity and atmospheric circulation anomalies, forming a local positive feedback for the PDO. The delayed negative feedback arises, because the intensified meridional SST gradient also generates an anticyclonic wind stress in the central North Pacific, warming the upper ocean by Ekman convergence. The warm upper ocean anomalies then propagate westward and are transported to the mid-latitudes in the western North Pacific by the western boundary current. This finally reduces the meridional SST gradient, 18 years after the peak PDO phase. These results demonstrate the significant contributions of the meridional SST gradient to the PDO’s evolution.acceptedVersio

    Intensification and poleward shift of subtropical western boundary currents in a warming climate

    Get PDF
    A significant increase in sea surface temperature (SST) is observed over the midlatitude western boundary currents (WBCs) during the past century. However, the mechanism for this phenomenon remains poorly understood due to limited observations. In the present paper, several coupled parameters (i.e., sea surface temperature (SST), ocean surface heat fluxes, ocean water velocity, ocean surface winds and sea level pressure (SLP)) are analyzed to identify the dynamic changes of the WBCs. Three types of independent data sets are used, including reanalysis products, satellite-blended observations. and climate model outputs from the fifth phase of the Climate Model Intercomparison Project (CMIP5). Based on these broad ranges of data, we find that the WBCs (except the Gulf Stream) are intensifying and shifting toward the poles as long-term effects of global warming. An intensification and poleward shift of near-surface ocean winds, attributed to positive annular mode-like trends, are proposed to be the forcing of such dynamic changes. In contrast to the other WBCs, the Gulf Stream is expected to be weaker under global warming, which is most likely related to a weakening of the Atlantic Meridional Overturning Circulation (AMOC). However, we also notice that the natural variations of WBCs might conceal the long-term effect of global warming in the available observational data sets, especially over the Northern Hemisphere. Therefore, long-term observations or proxy data are necessary to further evaluate the dynamics of the WBCs

    Role of the Gulf Stream and Kuroshio–Oyashio systems in large-scale atmosphere–ocean interaction : a review

    Get PDF
    Author Posting. © American Meteorological Society, 2010. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 23 (2010): 3249-3281, doi:10.1175/2010JCLI3343.1.Ocean–atmosphere interaction over the Northern Hemisphere western boundary current (WBC) regions (i.e., the Gulf Stream, Kuroshio, Oyashio, and their extensions) is reviewed with an emphasis on their role in basin-scale climate variability. SST anomalies exhibit considerable variance on interannual to decadal time scales in these regions. Low-frequency SST variability is primarily driven by basin-scale wind stress curl variability via the oceanic Rossby wave adjustment of the gyre-scale circulation that modulates the latitude and strength of the WBC-related oceanic fronts. Rectification of the variability by mesoscale eddies, reemergence of the anomalies from the preceding winter, and tropical remote forcing also play important roles in driving and maintaining the low-frequency variability in these regions. In the Gulf Stream region, interaction with the deep western boundary current also likely influences the low-frequency variability. Surface heat fluxes damp the low-frequency SST anomalies over the WBC regions; thus, heat fluxes originate with heat anomalies in the ocean and have the potential to drive the overlying atmospheric circulation. While recent observational studies demonstrate a local atmospheric boundary layer response to WBC changes, the latter’s influence on the large-scale atmospheric circulation is still unclear. Nevertheless, heat and moisture fluxes from the WBCs into the atmosphere influence the mean state of the atmospheric circulation, including anchoring the latitude of the storm tracks to the WBCs. Furthermore, many climate models suggest that the large-scale atmospheric response to SST anomalies driven by ocean dynamics in WBC regions can be important in generating decadal climate variability. As a step toward bridging climate model results and observations, the degree of realism of the WBC in current climate model simulations is assessed. Finally, outstanding issues concerning ocean–atmosphere interaction in WBC regions and its impact on climate variability are discussed.Funding for LT was provided by the NASA-sponsored Ocean Surface Topography Science Team, under Contract 1267196 with the University of Washington, administered by the Jet Propulsion Laboratory. HN was supported in part by the Grant-in-Aid 18204044 by the Japan Society for Promotion for Science (JSPS) and the Global Environment Research Fund (S-5) of the Japanese Ministry of Environment. YK was supported by the Kerr Endowed Fund and Penzance Endowed Fund

    Report of Working Group 29 on Regional Climate Modeling

    Get PDF

    The Kuroshio Extension northern recirculation gyre : profiling float measurements and forcing mechanism

    Get PDF
    Author Posting. © American Meteorological Society, 2008. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 38 (2008): 1764-1779, doi:10.1175/2008JPO3921.1.Middepth, time-mean circulation in the western North Pacific Ocean (28°–45°N, 140°–165°E) is investigated using drift information from the profiling floats deployed in the Kuroshio Extension System Study (KESS) and the International Argo programs. A well-defined, cyclonic recirculation gyre (RG) is found to exist north of the Kuroshio Extension jet, confined zonally between the Japan Trench (145°E) and the Shatsky Rise (156°E), and bordered to the north by the subarctic boundary along 40°N. This northern RG, which is simulated favorably in the eddy-resolving OGCM for the Earth Simulator (OFES) hindcast run model, has a maximum volume transport at 26.4 Sv across 159°E and its presence persists on the interannual and longer time scales. An examination of the time-mean x-momentum balance from the OFES hindcast run output reveals that horizontal convergence of Reynolds stresses works to accelerate both the eastward-flowing Kuroshio Extension jet and a westward mean flow north of the meandering jet. The fact that the northern RG is eddy driven is further confirmed by examining the turbulent Sverdrup balance, in which convergent eddy potential vorticity fluxes are found to induce the cyclonic RG across the background potential vorticity gradient field. For the strength of the simulated northern RG, the authors find the eddy dissipation effect to be important as well.This study was supported by NSF through Grant OCE-0220680 (UH) and OCE-0220161 (WHOI)
    • 

    corecore