1,499 research outputs found

    Towards a general description of the interior structure of rotating black holes

    Full text link
    The purpose of this paper is to present a number of proposals about the interior structure of a rotating black hole that is accreting slowly, but in an arbitrary time- and space-dependent fashion. The proposals could potentially be tested with numerical simulations. Outgoing and ingoing particles free-falling in the parent Kerr geometry become highly focused along the principal outgoing and ingoing null directions as they approach the inner horizon, triggering the mass inflation instability. The original arguments of Barrabes, Israel & Poisson (1990) regarding inflation in rotating black holes are reviewed, and shown to be based on Raychauduri's equation applied along the outgoing and ingoing null directions. It is argued that gravitational waves should behave in the geometric optics limit, and consequently that the spacetime should be almost shear-free. A full set of shear-free equations is derived. A specific line-element is proposed, which is argued should provide a satisfactory approximation during early inflation. Finally, it is argued that super-Planckian collisions between outgoing and ingoing particles will lead to entropy production, bringing inflation to an end, and precipitating collapse.Comment: 15 page

    Bi-gravity with a single graviton

    Full text link
    We analyze a bi-gravity model based on the first order formalism, having as fundamental variables two tetrads but only one Lorentz connection. We show that on a large class of backgrounds its linearization agrees with general relativity. At the non-linear level, additional degrees of freedom appear, and we reveal the mechanism hiding them around the special backgrounds. We further argue that they do not contain a massive graviton, nor the Boulware-Deser ghost. The model thus propagates only one graviton, whereas the nature of the additional degrees of freedom remains to be investigated. We also present a foliation-preserving deformation of the model, which keeps all symmetries except time diffeomorphisms and has three degrees of freedom.Comment: 29 page

    Chiral description of ghost-free massive gravity

    Get PDF
    We propose and study a new first order version of the ghost-free massive gravity. Instead of metrics or tetrads, it uses a connection together with Plebanski's chiral 2-forms as fundamental variables, rendering the phase space structure similar to that of SU(2) gauge theories. The chiral description simplifies computations of the constraint algebra, and allows us to perform the complete canonical analysis of the system. In particular, we explicitly compute the secondary constraint and carry out the stabilization procedure, thus proving that in general the theory propagates 7 degrees of freedom, consistently with previous claims. Finally, we point out that the description in terms of 2-forms opens the door to an infinite class of ghost-free massive bi-gravity actions. Our results apply directly to Euclidean signature. The reality conditions to be imposed in the Lorentzian signature appear to be more complicated than in the usual gravity case and are left as an open issue.Comment: 26 pages; extended discussion of reality conditions, added reference

    On the energy of homogeneous cosmologies

    Full text link
    An energy for the homogeneous cosmological models is presented. More specifically, using an appropriate natural prescription, we find the energy within any region with any gravitational source for a large class of gravity theories--namely those with a tetrad description--for all 9 Bianchi types. Our energy is given by the value of the Hamiltonian with homogeneous boundary conditions; this value vanishes for all regions in all Bianchi class A models, and it does not vanish for any class B model. This is so not only for Einstein's general relativity but, moreover, for the whole 3-parameter class of tetrad-teleparallel theories. For the physically favored one parameter subclass, which includes the teleparallel equivalent of Einstein's theory as an important special case, the energy for all class B models is, contrary to expectation, negative.Comment: 11 pages, reformated with minor change

    Teleparallel Theories of Gravity: Illuminating a Fully Invariant Approach

    Get PDF
    Teleparallel gravity and its popular generalization f(T)f(T) gravity can be formulated as fully invariant (under both coordinate transformations and local Lorentz transformations) theories of gravity. Several misconceptions about teleparallel gravity and its generalizations can be found in the literature, especially regarding their local Lorentz invariance. We describe how these misunderstandings may have arisen and attempt to clarify the situation. In particular, the central point of confusion in the literature appears to be related to the inertial spin connection in teleparallel gravity models. While inertial spin connections are commonplace in special relativity, and not something inherent to teleparallel gravity, the role of the inertial spin connection in removing the spurious inertial effects within a given frame of reference is emphasized here. The careful consideration of the inertial spin connection leads to the construction of a fully invariant theory of teleparallel gravity and its generalizations. Indeed, it is the nature of the spin connection that differentiates the relationship between what have been called good tetrads and bad tetrads and clearly shows that, in principle, any tetrad can be utilized. The field equations for the fully invariant formulation of teleparallel gravity and its generalizations are presented and a number of examples using different assumptions on the frame and spin connection are displayed to illustrate the covariant procedure. Various modified teleparallel gravity models are also briefly reviewed.Comment: v2: 72 pages, revised version, references added, matches published versio

    Covariance properties and regularization of conserved currents in tetrad gravity

    Get PDF
    We discuss the properties of the gravitational energy-momentum 3-form within the tetrad formulation of general relativity theory. We derive the covariance properties of the quantities describing the energy-momentum content under Lorentz transformations of the tetrad. As an application, we consider the computation of the total energy (mass) of some exact solutions of Einstein's general relativity theory which describe compact sources with asymptotically flat spacetime geometry. As it is known, depending on the choice of tetrad frame, the formal total integral for such configurations may diverge. We propose a natural regularization method which yields finite values for the total energy-momentum of the system and demonstrate how it works on a number of explicit examples.Comment: 36 pages, Revtex, no figures; small changes, published versio

    Lorentz Connections and Gravitation

    Full text link
    The different roles played by Lorentz connections in general relativity and in teleparallel gravity are reviewed. Some of the consequences of this difference are discussed.Comment: Lecture presented at the Sixth International School on Field Theory and Gravity, Petropolis, Brazil, 201
    • …
    corecore