32 research outputs found

    The Computational Complexity of the Restricted Isometry Property, the Nullspace Property, and Related Concepts in Compressed Sensing

    Full text link
    This paper deals with the computational complexity of conditions which guarantee that the NP-hard problem of finding the sparsest solution to an underdetermined linear system can be solved by efficient algorithms. In the literature, several such conditions have been introduced. The most well-known ones are the mutual coherence, the restricted isometry property (RIP), and the nullspace property (NSP). While evaluating the mutual coherence of a given matrix is easy, it has been suspected for some time that evaluating RIP and NSP is computationally intractable in general. We confirm these conjectures by showing that for a given matrix A and positive integer k, computing the best constants for which the RIP or NSP hold is, in general, NP-hard. These results are based on the fact that determining the spark of a matrix is NP-hard, which is also established in this paper. Furthermore, we also give several complexity statements about problems related to the above concepts.Comment: 13 pages; accepted for publication in IEEE Trans. Inf. Theor

    A polynomial bound on the number of comaximal localizations needed in order to make free a projective module

    Get PDF
    Abstract Let A be a commutative ring and M be a projective module of rank k with n generators. Let h = n − k. Standard computations show that M becomes free after localizations in`n k´c omaximal elements (see Theorem 5). When the base ring A contains a field with at least hk + 1 non-zero distinct elements we construct a comaximal family G with at most (hk + 1)(nk + 1) elements such that for each g ∈ G, the module Mg is free over A[1/g]

    Difficulté du résultant et des grands déterminants

    Get PDF
    21 pagesLe résultant est un polynôme permettant de déterminer si plusieurs polynômes donnés ont une racine commune. Canny a pu donner un algorithme PSPACE calculant le résultant à l'aide de calculs de déterminants, mais pose la question de sa complexité exacte. On s'intéresse ici à donner une estimation plus fine de cette complexité. D'une part, on montre que le résultant est dans AM, et qu'il est NP-difficile sous réduction probabiliste. D'autre part, les matrices en jeu étant descriptibles par des circuits de taille raisonnable, on montre que le calcul du déterminant pour de telles matrices est PSPACE-complet

    Applications of Locality and Asymmetry to Quantum Fault-Tolerance

    Full text link
    Quantum computing sounds like something out of a science-fiction novel. If we can exert control over unimaginably small systems, then we can harness their quantum mechanical behavior as a computational resource. This resource allows for astounding computational feats, and a new perspective on information-theory as a whole. But there's a caveat. The events we have to control are so fast and so small that they can hardly be said to have occurred at all. For a long time after Feynman's proposal and even still, there are some who believe that the barriers to controlling such events are fundamental. While we have yet to find anything insurmountable, the road is so pockmarked with challenges both experimental and theoretical that it is often difficult to see the road at all. Only a marriage of both engineering and theory in concert can hope to find the way forward. Quantum error-correction, and more broadly quantum fault-tolerance, is an unfinished answer to this question. It concerns the scaling of these microscopic systems into macroscopic regimes which we can fully control, straddling practical and theoretical considerations in its design. We will explore and prove several results on the theory of quantum fault-tolerance, but which are guided by the ultimate goal of realizing a physical quantum computer. In this thesis, we demonstrate applications of locality and asymmetry to quantum fault-tolerance. We introduce novel code families which we use to probe the behavior of thresholds in quantum subsystem codes. We also demonstrate codes in this family that are well-suited to efficiently correct asymmetric noise models, and determine their parameters. Next we show that quantum error-correcting encodings are incommensurate with transversal implementations of universal classical-reversible computation. Along the way, we resolve an open question concerning almost information-theoretically secure quantum fully homomorphic encryption, showing that it is impossible. Finally, we augment a framework for transversally mapping between stabilizer subspace codes, and discuss prospects for fault-tolerance.PHDMathematicsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/145948/1/mgnewman_1.pd

    Discontinuous Galerkin Method Applied to Navier-Stokes Equations

    Get PDF
    Discontinuous Galerkin (DG) finite element methods are becoming important techniques for the computational solution of many real-world problems describe by differential equations. They combine many attractive features of the finite element and the finite volume methods. These methods have been successfully applied to many important PDEs arising from a wide range of applications. DG methods are highly accurate numerical methods and have considerable advantages over the classical numerical methods available in the literature. DG methods can easily handle meshes with hanging nodes, elements of various types and shapes, and local spaces of different orders. Furthermore, DG methods provide accurate and efficient simulation of physical and engineering problems, especially in settings where the solutions exhibit poor regularity. For these reasons, they have attracted the attention of many researchers working in diverse areas, from computational fluid dynamics, solid mechanics and optimal control, to finance, biology and geology. In this talk, we give an overview of the main features of DG methods and their extensions. We first introduce the DG method for solving classical differential equations. Then, we extend the methods to other equations such as Navier-Stokes equations. The Navier-Stokes equations are useful because they describe the physics of many phenomena of scientific and engineering interest. They may be used to model the weather, ocean currents, water flow in a pipe and air flow around a wing

    Fault-tolerant quantum computer architectures using hierarchies of quantum error-correcting codes

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2008.Includes bibliographical references (p. 221-238).Quantum computers have been shown to efficiently solve a class of problems for which no efficient solution is otherwise known. Physical systems can implement quantum computation, but devising realistic schemes is an extremely challenging problem largely due to the effect of noise. A quantum computer that is capable of correctly solving problems more rapidly than modern digital computers requires some use of so-called fault-tolerant components. Code-based fault-tolerance using quantum error-correcting codes is one of the most promising and versatile of the known routes for fault-tolerant quantum computation. This dissertation presents three main, new results about code-based fault-tolerant quantum computer architectures. The first result is a large new family of quantum codes that go beyond stabilizer codes, the most well-studied family of quantum codes. Our new family of codeword stabilized codes contains all known codes with optimal parameters. Furthermore, we show how to systematically find, construct, and understand such codes as a pair of codes: an additive quantum code and a classical (nonlinear) code. Second, we resolve an open question about universality of so-called transversal gates acting on stabilizer codes. Such gates are universal for classical fault-tolerant computation, but they were conjectured to be insufficient for universal fault-tolerant quantum computation. We show that transversal gates have a restricted form and prove that some important families of them cannot be quantum universal. This is strong evidence that so-called quantum software is necessary to achieve universality, and, therefore, fault-tolerant quantum computer architecture is fundamentally different from classical computer architecture. Finally, we partition the fault-tolerant design problem into levels of a hierarchy of concatenated codes and present methods, compatible with rigorous threshold theorems, for numerically evaluating these codes.(cont.) The methods are applied to measure inner error-correcting code performance, as a first step toward elucidation of an effective fault-tolerant quantum computer architecture that uses no more than a physical, inner, and outer level of coding. Of the inner codes, the Golay code gives the highest pseudothreshold of 2 x 10-3. A comparison of logical error rate and overhead shows that the Bacon-Shor codes are competitive with Knill's C₄/C₆ scheme at a base error rate of 10⁻⁴.by Andrew W. Cross.Ph.D

    Subject Index Volumes 1–200

    Get PDF
    corecore