8,683 research outputs found

    Engineering procedure for positive displacement pump performance analysis based on 1D and 3D CFD commercial codes

    Get PDF
    A numerical analysis methodology, which demonstrates how a 1D pipework simulation can be enhanced with the results of a 3D CFD simulation of key components, is used to estimate the performance of multi-cylinder Positive Displacement pumps. The procedure uses of a 1-D lumped fluid dynamics model whose accuracy was improved by incorporating CFD analysis of the PD pump valves. The application describes how valve loss coefficient resulting from CFD analysis was utilised by the lumped parameter model as an input function. The results suggest that the combination of the CFD and lumped parameter approach exceeds the limitations found by Iannetti [1] in modelling the interaction between the pump chambers of a multi-cylinder pump as the simplified lumped parameter approachmakes the entire multicylinder model affordable in terms of computational power and time required. The results obtained are validated by means of experimental tests the results of which are presented together with the numerical data. An example of the capability of the procedure developed and the support it is able to provide to designers is also presented

    Reducing the environmental impact of hydraulic fracturing pumps

    Get PDF
    This thesis was previously held under moratorium from 01/12/16 to 01/12/21The current approach to hydraulic fracturing requires large amounts of industrial hard-ware to be transported, installed and operated in temporary locations. Typically 70% of the mass of this equipment is comprised of the fleet of truck-mounted pumps required to provide the high pressures and flows necessary for well stimulation. The established design of these pumps were developed for the shale gas extraction industry in North America, where the environmental, geological, regulatory and social constraints are very different from Europe. Consequently the engineering choices made in the current pump designs did not focus on minimising the physical and environmental footprint of the operation. These aspects are of paramount importance for the emerging hydraulic fracturing industry in Europe, so it is timely to address these factors when considering the design of future high-pressure pumps for European shale resources. This thesis develops and applies a methodology for environmental optimisation of the key mechanical design parameters for the high-pressure pumps that are central to hydraulic fracturing operations. Before describing the optimisation methodology the thesis provides an overview of the industrial plant required to carry out a hydraulic fracturing operation, and an estimate of the functional requirements (i.e. pressure and flow) of the equipment. The computational model, central to the optimisation process, is validated by using field data from a hydraulic fracturing site in North America and an experimental test rig. The optimisation analysis concludes that reducing the plunger diameter and running the pump at higher angular velocity, with lower forces, can increase pump efficiency by up to 4.6%. Furthermore the modification of the pump’s parameters would result in several environmental benefits beyond the obvious economic gains of lower fuel con-sumption. Previous studies have shown that over 90% of the emissions of CO2 and other pollutants that occur during a hydraulic fracturing operation are associated with the pumps and their prime movers. Consequently, any increase in pumping efficiency will also reduce the greenhouse gas emissions and improve local air quality (CO2, NOx and other pollutants). Additionaly, the reduction in plunger diameter will reduce the amplitude of fatigue stresses and so increase the life of the units and allow their overall mass to be reduced. More reliable pumps could decrease the number of standby (i.e. backup) units necessary, and so reduce procurement costs and site traffic, including the overall site footprint. The concluding system optimisation study suggests that the highest level of direct on-site emission is due to the inefficient and asynchronous operation of multiple frac-truck assemblies. Reducing the number of frac-truck assemblies subsequently affects pump traffic lowering the nuisance effects to the local community such as noise, road damage and road traffic risk.The current approach to hydraulic fracturing requires large amounts of industrial hard-ware to be transported, installed and operated in temporary locations. Typically 70% of the mass of this equipment is comprised of the fleet of truck-mounted pumps required to provide the high pressures and flows necessary for well stimulation. The established design of these pumps were developed for the shale gas extraction industry in North America, where the environmental, geological, regulatory and social constraints are very different from Europe. Consequently the engineering choices made in the current pump designs did not focus on minimising the physical and environmental footprint of the operation. These aspects are of paramount importance for the emerging hydraulic fracturing industry in Europe, so it is timely to address these factors when considering the design of future high-pressure pumps for European shale resources. This thesis develops and applies a methodology for environmental optimisation of the key mechanical design parameters for the high-pressure pumps that are central to hydraulic fracturing operations. Before describing the optimisation methodology the thesis provides an overview of the industrial plant required to carry out a hydraulic fracturing operation, and an estimate of the functional requirements (i.e. pressure and flow) of the equipment. The computational model, central to the optimisation process, is validated by using field data from a hydraulic fracturing site in North America and an experimental test rig. The optimisation analysis concludes that reducing the plunger diameter and running the pump at higher angular velocity, with lower forces, can increase pump efficiency by up to 4.6%. Furthermore the modification of the pump’s parameters would result in several environmental benefits beyond the obvious economic gains of lower fuel con-sumption. Previous studies have shown that over 90% of the emissions of CO2 and other pollutants that occur during a hydraulic fracturing operation are associated with the pumps and their prime movers. Consequently, any increase in pumping efficiency will also reduce the greenhouse gas emissions and improve local air quality (CO2, NOx and other pollutants). Additionaly, the reduction in plunger diameter will reduce the amplitude of fatigue stresses and so increase the life of the units and allow their overall mass to be reduced. More reliable pumps could decrease the number of standby (i.e. backup) units necessary, and so reduce procurement costs and site traffic, including the overall site footprint. The concluding system optimisation study suggests that the highest level of direct on-site emission is due to the inefficient and asynchronous operation of multiple frac-truck assemblies. Reducing the number of frac-truck assemblies subsequently affects pump traffic lowering the nuisance effects to the local community such as noise, road damage and road traffic risk

    Investigation of Novel Displacement-Controlled Hydraulic Architectures for Railway Construction and Maintenance Machines

    Get PDF
    This dissertation aims at showing how to transform hydraulic systems of railway multi-actuator machinery characterized by inefficient state-of-the-art systems into the 21st Century. Designing machines that are highly efficient, productive, reliable, and cost affordable represents the target of this research. In this regard, migrating from valve-controlled architectures to displacement-controlled layouts is the proper answer. Displacement-controlled systems remove the losses generated by flow throttling typical of conventional circuits, allow an easy implementation of energy recovery (e.g. during regenerative braking), and create the possibility for the use of hybrid systems capable of maximizing the downsizing of the combustion engine. One portion of the dissertation focuses on efficient propulsion systems suitable for railway construction and maintenance machines. Two non-hybrid architectures are first proposed, i.e. a novel layout grounded on two independent hydrostatic transmissions (HSTs) and two secondary controlled hydraulic motors (SCHMs) connected in parallel. Three suitable control strategies are developed according to the specific requirements for railway machines and dedicated controllers are implemented. Detailed analyses are conducted via high-fidelity virtual simulations involving accurate modeling of the rail/wheel interface. The performance of the propulsion systems is proven by acceptable velocity tracking, accurate stopping position, achieving regenerative braking, and the expected behavior of the slip coefficients on both axles. Energy efficiency is the main emphasis during representative working cycles, which shows that the independent HSTs are more efficient. They consume 6.6% less energy than the SCHMs working with variable-pressure and 12.8% less energy than the SCHMs controlled with constant-pressure. Additionally, two alternative hybrid propulsion systems are proposed and investigated. These architectures enable a 35% reduction of the baseline machine’s rated engine power without modifying the working hydraulics. Concerning the working hydraulics, the focus is to extend displacement-controlled technology to specific functions on railway construction and maintenance machines. Two specific examples of complete hydraulic circuits for the next generation tamper-liners are proposed. In particular, an innovative approach used to drive displacement-controlled dual function squeeze actuators is presented, implemented, and experimentally validated. This approach combines two functions into a unique actuator, namely squeezing the ballast and vibrating the tamping tools of the work-heads. This results in many advantages, such as variable amplitude and variable frequency of the tamping tools’ vibration, improved reliability of the tamping process, and energy efficient actuation. A motion of the squeeze actuator characterized by a vibration up to 45 Hz, i.e. the frequency used in state-of-the-art systems, is experimentally confirmed. In conclusion, this dissertation demonstrates that displacement-controlled actuation represents the correct solution for next-generation railway construction and maintenance machines

    Development of a Variable Roller Pump and Evaluation of its Power Saving Potential as a Charge Pump in Hydrostatic Drivetrains

    Get PDF
    Predložená doktorandská dizertačná práca (ďalej len práca) sa zaoberá rozsiahlou analýzou valčekového hydrogenerátora s premenlivým geometrickým objemom a predikciou výkonových úspor dosiahnutých aplikáciou navrhnutého valčekového hydrogenerátora s premenlivým geometrickým objemom v hydrostatickom pohone vybraných mobilných pracovných strojov. Teoretický rozbor princípov fungovania valčekového hydrogenerátora a teória jednorozmerného simulačného modelu sú popísané v prvej časti práce. Na základe odvodenej teórie je vytvorený simulačný model, ktorý je vhodný na predikciu priebehu tlaku v komorách valčekového hydrogenerátora, síl pôsobiacich na valček a na predikciu vnútorných únikov vzniknutých skratovaním rozvodovej dosky, ktoré majú priamy vplyv na objemovú účinnosť valčekového hydrogenerátora. Simulačný model bol úspešne použitý pre optimalizáciu rozvodových dosiek valčekového hydrogenerátora a vhodnosť simulačného modelu potvrdili následné merania Práca obsahuje aj analýzu síl pôsobiacich na vodiaci prstenec, ktorej výsledky boli taktiež potvrdené meraním. Analýza týchto síl môže vylepšiť v konečnom dôsledku parametre budúcich tlakových regulácii. Práca ďalej obsahuje základné porovnanie použitých tlakových regulácii. Všetky uskutočnené merania potvrdili, že valčekový hydrogenerátor s premenlivým geometrickým objemom s testovanými tlakovými reguláciami je schopný úspešne pracovať v hydrostatickej prevodovke. Druhá časť práce analyzuje potenciál výkonových úspor valčekového hydrogenerátora s premenlivým geometrickým objemom pre dve mobilné aplikácie - teleskopický nakladač s hmotnosťou 9 ton a kombajn s hmotnosťou 20 ton. Analýza vyžaduje jednorozmerný simulačný model hydrostatického pohonu s teplotnou predikciou hydrostatickej prevodovky. Dva rozdielne koncepty variabilného doplňovacieho systému hydrostatickej prevodovky sú porovnané so štandardným doplňovacím systémom pre pracovný a transportný režim oboch vybraných typov vozidiel. Simulácia pohonu vozidla s valčekovým hydrogenerátorom s premenlivým geometrickým objemom vo funkcii doplňovacieho hydrogenerátora a obtokovou clonou potvrdili vyššie úspory iba v prípadoch, kedy rýchlosť doplňovacieho hydrogenerátora bola výrazne vyššia a prietok cez obtokovú clonu do skrine hlavného hydrogenerátora zabezpečil dostatočné chladenie. Najvyššie výkonové úspory boli dosiahnuté s premenlivým preplachovacím systémom, ktorého prietok sa menil podľa požiadaviek hydrostatickej prevodovky. Záver druhej časti práce sa zaoberá metodikou dimenzovania veľkosti doplňovacieho hydrogenerátora.Presented doctoral thesis deals with an extensive hydraulic variable roller pump analysis and the power saving prediction of hydrostatic drivetrains in the mobile machines achieved with a variable roller charge pump implementation. At the first part of the work, the roller pump functionality was described and the theory of a 1-D simulation model was developed. Based on this developed simulation model is suitable for pressure profile prediction, roller force prediction and cross port leakage prediction which has a direct impact on the total volumetric efficiency. The simulation model was successfully used as a tool for optimization of the port plates, which was confirmed by measurements. The first part of the work includes the pump control force analysis validated by measurements and also the basic pressure compensator controls comparison. Developed control force prediction could help to improve the control performance. The measurements confirmed that the variable roller charge pump is able to successfully work in transmissions with measured types of the control. The second part of the work analyzed the power saving potential of a variable charge pump for two selected typical mobile applications: telehandler (9 ton) and combine harvester (20 ton). This part required a 1-D drivetrain simulation model together with thermal behaviour of the hydrostatic transmission. Two different modifications of the charging systems were compared with the conventional charging system in simulations performed for the working and transporting mode. The drivetrain simulation of the variable roller charge pump with a bypass orifice confirms higher power savings only in cases when the pump speed was significantly higher than normal speeds and a relatively constant flushing flow through the bypass orifice to the pump case still ensures suitable cooling. The highest power savings were achieved with variable flushing flows, where the demand for charging flow was adjusted according to the hydrostatic transmission cooling requirements. At the end of the second part, this thesis deals with a variable charge pump sizing.

    Modeling of High Pressure Radial Piston Pumps

    Get PDF
    Agarwal, Pulkit. M.S.M.E., Purdue University, December 2014. Modeling of High Pressure Radial Piston Pumps. Major Professor: Andrea Vacca, School of Mechanical Engineering A comprehensive multi-domain simulation tool for investigating the operation of radial piston machines has been developed in the present study. The simulation tool is capable of analyzing the displacing action of the machine parts as well as the power losses occurring in the lubricating interfaces which makes it useful for supporting the design process of radial piston units. The reference machine analyzed in this study is a radial piston pump of rotating cam type design used for high pressure applications. Though the modeling process and calculations in this analysis pertain mostly to this specific design, the concepts involved and numerical procedure can be applied to generic designs of radial piston machines. A lumped parameter based model for complete hydraulic system of the pump has been formulated which can predict the main flow parameters in the pump namely flow rate and pressure at pump outlet. This model can be easily coupled with other hydraulic components present in a circuit to model the systems level performance of the machine. However, an improvement in pump design calls for a detailed investigation of internal components present in the pump specifically the lubricating interfaces present in the pump. The lumped parameter model is capable of generating boundary conditions to simulate the flow behavior in these lubricating interfaces. A separate model for piston-cylinder interface and cam-piston interface has been developed in this study to incorporate the detailed features involved in each of them. The piston/cylinder lubricating interface represents one of the most critical design elements of radial piston machines. The interface performs the functions of a hydrodynamic bearing by supporting the radial loads acting on the piston, seals the high pressure fluid in the displacement chamber and reduces friction between the moving parts. However, operating in the Elastohydrodyamic Lubrication (EHL) regime, it also represents one of the main sources of power loss due to viscous friction and leakage flow. An accurate prediction of instantaneous film thickness, pressure field, and load carrying ability is necessary to create more efficient interface designs. For this purpose, a fully coupled numerical solver has been developed to capture fluid-structure interaction phenomena in the lubricating interface at isothermal fluid conditions. This model considers the piston micro-motion during one complete cycle of pump operation. The radial loads acting on the piston have a significant influence on piston micro-motion and hence the power losses in piston-cylinder interface. These loads are caused majorly by the friction forces existing between the cam and piston. A more accurate evaluation of performance parameters in the piston-cylinder interface can be achieved by calculating the instantaneous friction acting between the cam and piston under lubricating conditions. Different approaches for evaluating this friction coefficient were considered ranging from a simplified assumptions of pure sliding, pure rolling to a detailed analysis of lubricant flow between the cam-piston surfaces. For this purpose, a line contact EHL model was developed that can predict viscous friction forces generated between the cam and piston at changing surface velocities and contact loads. Also, instantaneous pressure field and film thickness can be predicted to a reasonable accuracy. This model is capable of analyzing multiple configurations of cam-piston interface design. The numerical results presented in this thesis provide detailed information of the pump performance parameters at different operating conditions thereby confirming the utility of the simulation tool to support the design process of these units and assist in creation of more energy efficient pumps. Validation of the numerical model developed in this study with experimental results can be a part of future work

    Development of Control Strategies for Digital Displacement Units

    Get PDF

    Smart Flow Control Processes in Micro Scale

    Get PDF
    In recent years, microfluidic devices with a large surface-to-volume ratio have witnessed rapid development, allowing them to be successfully utilized in many engineering applications. A smart control process has been proposed for many years, while many new innovations and enabling technologies have been developed for smart flow control, especially concerning “smart flow control” at the microscale. This Special Issue aims to highlight the current research trends related to this topic, presenting a collection of 33 papers from leading scholars in this field. Among these include studies and demonstrations of flow characteristics in pumps or valves as well as dynamic performance in roiling mill systems or jet systems to the optimal design of special components in smart control systems
    corecore