37,156 research outputs found

    Solving generic nonarchimedean semidefinite programs using stochastic game algorithms

    Full text link
    A general issue in computational optimization is to develop combinatorial algorithms for semidefinite programming. We address this issue when the base field is nonarchimedean. We provide a solution for a class of semidefinite feasibility problems given by generic matrices. Our approach is based on tropical geometry. It relies on tropical spectrahedra, which are defined as the images by the valuation of nonarchimedean spectrahedra. We establish a correspondence between generic tropical spectrahedra and zero-sum stochastic games with perfect information. The latter have been well studied in algorithmic game theory. This allows us to solve nonarchimedean semidefinite feasibility problems using algorithms for stochastic games. These algorithms are of a combinatorial nature and work for large instances.Comment: v1: 25 pages, 4 figures; v2: 27 pages, 4 figures, minor revisions + benchmarks added; v3: 30 pages, 6 figures, generalization to non-Metzler sign patterns + some results have been replaced by references to the companion work arXiv:1610.0674

    Model and Reinforcement Learning for Markov Games with Risk Preferences

    Full text link
    We motivate and propose a new model for non-cooperative Markov game which considers the interactions of risk-aware players. This model characterizes the time-consistent dynamic "risk" from both stochastic state transitions (inherent to the game) and randomized mixed strategies (due to all other players). An appropriate risk-aware equilibrium concept is proposed and the existence of such equilibria is demonstrated in stationary strategies by an application of Kakutani's fixed point theorem. We further propose a simulation-based Q-learning type algorithm for risk-aware equilibrium computation. This algorithm works with a special form of minimax risk measures which can naturally be written as saddle-point stochastic optimization problems, and covers many widely investigated risk measures. Finally, the almost sure convergence of this simulation-based algorithm to an equilibrium is demonstrated under some mild conditions. Our numerical experiments on a two player queuing game validate the properties of our model and algorithm, and demonstrate their worth and applicability in real life competitive decision-making.Comment: 38 pages, 6 tables, 5 figure

    An Accretive Operator Approach to Ergodic Problems for Zero-Sum Games

    Full text link
    Mean payoff stochastic games can be studied by means of a nonlinear spectral problem involving the Shapley operator: the ergodic equation. A solution consists in a scalar, called the ergodic constant, and a vector, called bias. The existence of such a pair entails that the mean payoff per time unit is equal to the ergodic constant for any initial state, and the bias gives stationary strategies. By exploiting two fundamental properties of Shapley operators, monotonicity and additive homogeneity, we give a necessary and sufficient condition for the solvability of the ergodic equation for all the Shapley operators obtained by perturbation of the transition payments of a given stochastic game with finite state space. If the latter condition is satisfied, we establish that the bias is unique (up to an additive constant) for a generic perturbation of the transition payments. To show these results, we use the theory of accretive operators, and prove in particular some surjectivity condition.Comment: 4 pages, 1 figure, to appear in Proc. 22nd International Symposium on Mathematical Theory of Networks and Systems (MTNS 2016

    Information Theory - The Bridge Connecting Bounded Rational Game Theory and Statistical Physics

    Full text link
    A long-running difficulty with conventional game theory has been how to modify it to accommodate the bounded rationality of all real-world players. A recurring issue in statistical physics is how best to approximate joint probability distributions with decoupled (and therefore far more tractable) distributions. This paper shows that the same information theoretic mathematical structure, known as Product Distribution (PD) theory, addresses both issues. In this, PD theory not only provides a principled formulation of bounded rationality and a set of new types of mean field theory in statistical physics. It also shows that those topics are fundamentally one and the same.Comment: 17 pages, no figures, accepted for publicatio

    Oscillatory Dynamics in Rock-Paper-Scissors Games with Mutations

    Get PDF
    We study the oscillatory dynamics in the generic three-species rock-paper-scissors games with mutations. In the mean-field limit, different behaviors are found: (a) for high mutation rate, there is a stable interior fixed point with coexistence of all species; (b) for low mutation rates, there is a region of the parameter space characterized by a limit cycle resulting from a Hopf bifurcation; (c) in the absence of mutations, there is a region where heteroclinic cycles yield oscillations of large amplitude (not robust against noise). After a discussion on the main properties of the mean-field dynamics, we investigate the stochastic version of the model within an individual-based formulation. Demographic fluctuations are therefore naturally accounted and their effects are studied using a diffusion theory complemented by numerical simulations. It is thus shown that persistent erratic oscillations (quasi-cycles) of large amplitude emerge from a noise-induced resonance phenomenon. We also analytically and numerically compute the average escape time necessary to reach a (quasi-)cycle on which the system oscillates at a given amplitude.Comment: 25 pages, 9 figures. To appear in the Journal of Theoretical Biolog

    Solving Stochastic B\"uchi Games on Infinite Arenas with a Finite Attractor

    Full text link
    We consider games played on an infinite probabilistic arena where the first player aims at satisfying generalized B\"uchi objectives almost surely, i.e., with probability one. We provide a fixpoint characterization of the winning sets and associated winning strategies in the case where the arena satisfies the finite-attractor property. From this we directly deduce the decidability of these games on probabilistic lossy channel systems.Comment: In Proceedings QAPL 2013, arXiv:1306.241
    • …
    corecore