1 research outputs found

    Value-Decomposition Networks based Distributed Interference Control in Multi-platoon Groupcast

    Full text link
    Platooning is considered one of the most representative 5G use cases. Due to the small spacing within the platoon, the platoon needs more reliable transmission to guarantee driving safety while improving fuel and driving efficiency. However, efficient resource allocation between platoons has been a challenge, especially considering that the channel and power selected by each platoon will affect other platoons. Therefore, platoons need to coordinate with each other to ensure the groupcast quality of each platoon. To solve these challenges, we model the multi-platoon resource selection problem as Markov games and then propose a distributed resource allocation algorithm based on Value-Decomposition Networks. Our scheme utilizes the historical data of each platoon for centralized training. In distributed execution, agents only need their local observations to make decisions. At the same time, we decrease the training burden by sharing the neural network parameters. Simulation results show that the proposed algorithm has excellent convergence. Compared with another multi-agent algorithm (MARL) and random algorithm, our proposed solution can dramatically reduce the probability of platoon groupcast failure and improve the quality of platoon groupcast
    corecore