297,831 research outputs found

    Eco‐Holonic 4.0 Circular Business Model to  Conceptualize Sustainable Value Chain Towards  Digital Transition 

    Get PDF
    The purpose of this paper is to conceptualize a circular business model based on an Eco-Holonic Architecture, through the integration of circular economy and holonic principles. A conceptual model is developed to manage the complexity of integrating circular economy principles, digital transformation, and tools and frameworks for sustainability into business models. The proposed architecture is multilevel and multiscale in order to achieve the instantiation of the sustainable value chain in any territory. The architecture promotes the incorporation of circular economy and holonic principles into new circular business models. This integrated perspective of business model can support the design and upgrade of the manufacturing companies in their respective industrial sectors. The conceptual model proposed is based on activity theory that considers the interactions between technical and social systems and allows the mitigation of the metabolic rift that exists between natural and social metabolism. This study contributes to the existing literature on circular economy, circular business models and activity theory by considering holonic paradigm concerns, which have not been explored yet. This research also offers a unique holonic architecture of circular business model by considering different levels, relationships, dynamism and contextualization (territory) aspects

    Enhancing urban sustainability through novel visualisation

    Get PDF
    Sustainable decision making in Urban Design is a complex and non-linear process that requires the interaction of a wide variety of stakeholders. The engagement of a range of stakeholders throughout the decision making process presents challenges including the need to communicate the complex and interdependent facets of sustainability and the need to demonstrate the short and long term implications of alternative courses of action.This paper presents the results of an initial application of a prototype simulation and visualisation tool (S-City VT) that was developed to enable all stakeholders, regardless of background or experience, to understand, interact with and influence decisions made on the sustainability of urban design. S-City VT takes the unique approach of combining computer game technology with computer modelling to present stakeholders with an interactive virtual development. The paper uses the Dundee Central Waterfront Development Project as a case study to evaluate the potential for the application of the tool and explains how parallel research work on the implementation of a sustainability enhancement framework for the Central Waterfront Development has informed the choice of sustainability indictors and identified the key stakeholders in the decision making processes.The paper shows how stakeholders can be presented with the outputs from the model using a 3D visualisation of the development and thus enables judgements to be made on the relative sustainability of aspects of the development. The visualisation tool employs a number of different methods of displaying the sustainability results to the stakeholders. These methods can show data in varying levels of complexity, depending on the expertise of the stakeholder, empowering all stakeholders by illustrating possible interactions between indicator values and sustainability and by showing how different stakeholder perceptions of the importance of the indicators can influence the sustainability assessment.Initial tests on the effectiveness of the different visualisation methods in displaying the model output to communicate the sustainability of the Development are described. The results of the tests and presented and discussed and conclusions are drawn on the further development and application of the tool to model and visualise through time the possible results of decisions made at different stages of the project

    The Global Engineer : Incorporating global skills within UK higher education of engineers

    Get PDF

    A holistic multi-methodology for sustainable renovation

    Get PDF
    A review of the barriers for building renovation has revealed a lack of methodologies, which can promote sustainability objectives and assist various stakeholders during the design stage of building renovation/retrofitting projects. The purpose of this paper is to develop a Holistic Multi-methodology for Sustainable Renovation, which aims to deal with complexity of renovation projects. It provides a framework through which to involve the different stakeholders in the design process to improve group learning and group decision-making, and hence make the building renovation design process more robust and efficient. Therefore, the paper discusses the essence of multifaceted barriers in building renovation regarding cultural changes and technological/physical changes. The outcome is a proposal for a multi-methodology framework, which is developed by introducing, evaluating and mixing methods from Soft Systems Methodologies (SSM) with Multiple Criteria Decision Making (MCDM). The potential of applying the proposed methodology in renovation projects is demonstrated through a case study

    Exploring Agricultural Production Systems and Their Fundamental Components with System Dynamics Modelling

    Get PDF
    Agricultural production in the United States is undergoing marked changes due to rapid shifts in consumer demands, input costs, and concerns for food safety and environmental impact. Agricultural production systems are comprised of multidimensional components and drivers that interact in complex ways to influence production sustainability. In a mixed-methods approach, we combine qualitative and quantitative data to develop and simulate a system dynamics model that explores the systemic interaction of these drivers on the economic, environmental and social sustainability of agricultural production. We then use this model to evaluate the role of each driver in determining the differences in sustainability between three distinct production systems: crops only, livestock only, and an integrated crops and livestock system. The result from these modelling efforts found that the greatest potential for sustainability existed with the crops only production system. While this study presents a stand-alone contribution to sector knowledge and practice, it encourages future research in this sector that employs similar systems-based methods to enable more sustainable practices and policies within agricultural production

    Business models and information systems for sustainable development

    Get PDF
    Businesses are expected to explore market opportunities in the area of sustainable development, thus contributing to finding solutions aiming at sustainable quality of life. This will require adaptation and innovation of business models and information systems, with challenges of particular interest to the business modeling and software design community. This paper briefly discusses two relevant topics in this respect, namely (i) goal and value modeling, and (ii) model-driven development. We mention existing work that can be taken as a starting point for addressing sustainability issues, and we make some observations that may be taken into account when extending existing work

    Optimal management of bio-based energy supply chains under parametric uncertainty through a data-driven decision-support framework

    Get PDF
    This paper addresses the optimal management of a multi-objective bio-based energy supply chain network subjected to multiple sources of uncertainty. The complexity to obtain an optimal solution using traditional uncertainty management methods dramatically increases with the number of uncertain factors considered. Such a complexity produces that, if tractable, the problem is solved after a large computational effort. Therefore, in this work a data-driven decision-making framework is proposed to address this issue. Such a framework exploits machine learning techniques to efficiently approximate the optimal management decisions considering a set of uncertain parameters that continuously influence the process behavior as an input. A design of computer experiments technique is used in order to combine these parameters and produce a matrix of representative information. These data are used to optimize the deterministic multi-objective bio-based energy network problem through conventional optimization methods, leading to a detailed (but elementary) map of the optimal management decisions based on the uncertain parameters. Afterwards, the detailed data-driven relations are described/identified using an Ordinary Kriging meta-model. The result exhibits a very high accuracy of the parametric meta-models for predicting the optimal decision variables in comparison with the traditional stochastic approach. Besides, and more importantly, a dramatic reduction of the computational effort required to obtain these optimal values in response to the change of the uncertain parameters is achieved. Thus the use of the proposed data-driven decision tool promotes a time-effective optimal decision making, which represents a step forward to use data-driven strategy in large-scale/complex industrial problems.Peer ReviewedPostprint (published version

    Contextual impacts on industrial processes brought by the digital transformation of manufacturing: a systematic review

    Get PDF
    The digital transformation of manufacturing (a phenomenon also known as "Industry 4.0" or "Smart Manufacturing") is finding a growing interest both at practitioner and academic levels, but is still in its infancy and needs deeper investigation. Even though current and potential advantages of digital manufacturing are remarkable, in terms of improved efficiency, sustainability, customization, and flexibility, only a limited number of companies has already developed ad hoc strategies necessary to achieve a superior performance. Through a systematic review, this study aims at assessing the current state of the art of the academic literature regarding the paradigm shift occurring in the manufacturing settings, in order to provide definitions as well as point out recurring patterns and gaps to be addressed by future research. For the literature search, the most representative keywords, strict criteria, and classification schemes based on authoritative reference studies were used. The final sample of 156 primary publications was analyzed through a systematic coding process to identify theoretical and methodological approaches, together with other significant elements. This analysis allowed a mapping of the literature based on clusters of critical themes to synthesize the developments of different research streams and provide the most representative picture of its current state. Research areas, insights, and gaps resulting from this analysis contributed to create a schematic research agenda, which clearly indicates the space for future evolutions of the state of knowledge in this field
    corecore