236,913 research outputs found

    System Dynamics Modelling and System Analysis Applied in Complex Research Projects - the Case of VALUMICS

    Get PDF
    VALUMICS is a Horizon 2020 project funded by the European Commission (2017-2021). The project structure is highly integrated and transdisciplinary, building on the expertise of over 30 specialists in various fields of research including knowledge integration through systems analysis and system dynamics modelling, food science, supply chain management, life cycle assessment, logistics, economics and social science. The aim of the project is to analyze the dynamics of food supply- and value chain systems using a structural analysis including system analysis and perform system simulations using system dynamics. The VALUMICS research approach and the project design are explained and it is justified why system analysis is needed to obtain an understanding of the complex connections and interactions of the distinct parts of food systems. Patterns will be recognized and thus causes and effects of complex relations within the selected food supply system and networks will be identified. This understanding of the functioning of the system can in turn be used to identify policy interventions

    Atomistic-continuum multiscale modelling of magnetisation dynamics at non-zero temperature

    Full text link
    In this article, a few problems related to multiscale modelling of magnetic materials at finite temperatures and possible ways of solving these problems are discussed. The discussion is mainly centred around two established multiscale concepts: the partitioned domain and the upscaling-based methodologies. The major challenge for both multiscale methods is to capture the correct value of magnetisation length accurately, which is affected by a random temperature-dependent force. Moreover, general limitations of these multiscale techniques in application to spin systems are discussed.Comment: 30 page

    Transitory powder flow dynamics during emptying of a continuous mixer

    Get PDF
    This article investigates the emptying process of a continuous powder mixer, from both experimental and modelling points of view. The apparatus used in this work is a pilot scale commercial mixer Gericke GCM500, for which a specific experimental protocol has been developed to determine the hold up in the mixer and the real outflow. We demonstrate that the dynamics of the process is governed by the rotational speed of the stirrer, as it fixes characteristic values of the hold-up weight, such as a threshold hold-up weight. This is integrated into a Markov chain matrix representation that can predict the evolution of the hold-up weight, as well as that of the outflow rate during emptying the mixer. Depending on the advancement of the process, the Markov chain must be considered as non-homogeneous. The comparison of model results with experimental data not used in the estimation procedure of the parameters contributes to validating the viability of this model. In particular, we report results obtained when emptying the mixer at variable rotational speed, through step changes

    Varying the resolution of the Rouse model on temporal and spatial scales: application to multiscale modelling of DNA dynamics

    Full text link
    A multi-resolution bead-spring model for polymer dynamics is developed as a generalization of the Rouse model. A polymer chain is described using beads of variable sizes connected by springs with variable spring constants. A numerical scheme which can use different timesteps to advance the positions of different beads is presented and analyzed. The position of a particular bead is only updated at integer multiples of the timesteps associated with its connecting springs. This approach extends the Rouse model to a multiscale model on both spatial and temporal scales, allowing simulations of localized regions of a polymer chain with high spatial and temporal resolution, while using a coarser modelling approach to describe the rest of the polymer chain. A method for changing the model resolution on-the-fly is developed using the Metropolis-Hastings algorithm. It is shown that this approach maintains key statistics of the end-to-end distance and diffusion of the polymer filament and makes computational savings when applied to a model for the binding of a protein to the DNA filament.Comment: Submitted to Multiscale Modeling and Simulatio

    Judgement and supply chain dynamics

    Get PDF
    Forecasting demand at the individual stock-keeping-unit (SKU) level often necessitates the use of statistical methods, such as exponential smoothing. In some organizations, however, statistical forecasts will be subject to judgemental adjustments by managers. Although a number of empirical and ‘laboratory’ studies have been performed in this area, no formal OR modelling has been conducted to offer insights into the impact such adjustments may have on supply chain performance and the potential development of mitigation mechanisms. This is because of the associated dynamic complexity and the situation-specific nature of the problem at hand. In conjunction with appropriate stock control rules, demand forecasts help decide how much to order. It is a common practice that replenishment orders may also be subject to judgemental intervention, adding further to the dynamic system complexity and interdependence. The system dynamics (SD) modelling method can help advance knowledge in this area, where mathematical modelling cannot accommodate the associated complexity. This study, which constitutes part of a UK government funded (EPSRC) project, uses SD models to evaluate the effects of forecasting and ordering adjustments for a wide set of scenarios involving: three different inventory policies; seven different (combinations of) points of intervention; and four different (combinations of) types of judgmental intervention (optimistic and pessimistic). The results enable insights to be gained into the performance of the entire supply chain. An agenda for further research concludes the paper

    A general framework for quantifying the effects of land-use history on ecosystem dynamics

    No full text
    Land-use legacies are important for explaining present-day ecological patterns and processes. However, an overarching approach to quantify land-use history effects on ecosystem properties is lacking, mainly due to the scarcity of high-quality, complete and detailed data on past land use. We propose a general framework for quantifying the effects of land-use history on ecosystem properties, which is applicable (i) to different ecological processes in various ecosystem types and across trophic levels; and (ii) when historical data are incomplete or of variable quality. The conceptual foundation of our framework is that past land use affects current (and future) ecosystem properties through altering the past values of resources and conditions that are the driving variables of ecosystem responses. We describe and illustrate how Markov chains can be applied to derive past time series of driving variables, and how these time series can be used to improve our understanding of present-day ecosystem properties. We present our framework in a stepwise manner, elucidating its general nature. We illustrate its application through a case study on the importance of past light levels for the contemporary understorey composition of temperate deciduous forest. We found that the understorey shows legacies of past forest management: high past light availability lead to a low proportion of typical forest species in the understorey. Our framework can be a useful tool for quantifying the effect of past land use on ecological patterns and processes and enhancing our understanding of ecosystem dynamics by including legacy effects which have often been ignored

    Molecular Dynamics Simulation of Polymer-Metal Bonds

    Get PDF
    Molecular simulation is becoming a very powerful tool for studying dynamic phenomena in materials. The simulation yields information about interaction at length and time scales unattainable by experimental measurements and unpredictable by continuum theories. This is especially meaningful when referring to bonding between a polymer and a metal substrate. A very important characteristic of polymers is that their physical properties do not rely on the detailed chemical structure of the molecular chains but only on their flexibility, and accordingly they will be able to adopt different conformations. In this paper, a molecular simulation of the bonding between vinyl ester polymer and steel is presented. Four different polymers with increasing chain lengths have been studied. Atomic co-ordinates are adjusted in order to reduce the molecular energy. Conformational changes in the macromolecules have been followed to obtain the polymer pair correlation function. Radius of gyration and end-to-end distance distributions of the individual chains have been used as a quantitative measurement of their flexibility. There exists a correlation between flexibility of the molecular chains and the energy of adhesion between the polymer and the metal substrate. Close contacts between the two materials are established at certain points but every atom up to a certain distance from the interface contributes to the total value of the adhesion energy of the system

    Multi-resolution polymer Brownian dynamics with hydrodynamic interactions

    Full text link
    A polymer model given in terms of beads, interacting through Hookean springs and hydrodynamic forces, is studied. Brownian dynamics description of this bead-spring polymer model is extended to multiple resolutions. Using this multiscale approach, a modeller can efficiently look at different regions of the polymer in different spatial and temporal resolutions with scalings given for the number of beads, statistical segment length and bead radius in order to maintain macro-scale properties of the polymer filament. The Boltzmann distribution of a Gaussian chain for differing statistical segment lengths gives a Langevin equation for the multi-resolution model with a mobility tensor for different bead sizes. Using the pre-averaging approximation, the translational diffusion coefficient is obtained as a function of the inverse of a matrix and then in closed form in the long-chain limit. This is then confirmed with numerical experiments.Comment: Submitted to Journal of Chemical Physic
    • 

    corecore