2,002 research outputs found

    Learning and Management for Internet-of-Things: Accounting for Adaptivity and Scalability

    Get PDF
    Internet-of-Things (IoT) envisions an intelligent infrastructure of networked smart devices offering task-specific monitoring and control services. The unique features of IoT include extreme heterogeneity, massive number of devices, and unpredictable dynamics partially due to human interaction. These call for foundational innovations in network design and management. Ideally, it should allow efficient adaptation to changing environments, and low-cost implementation scalable to massive number of devices, subject to stringent latency constraints. To this end, the overarching goal of this paper is to outline a unified framework for online learning and management policies in IoT through joint advances in communication, networking, learning, and optimization. From the network architecture vantage point, the unified framework leverages a promising fog architecture that enables smart devices to have proximity access to cloud functionalities at the network edge, along the cloud-to-things continuum. From the algorithmic perspective, key innovations target online approaches adaptive to different degrees of nonstationarity in IoT dynamics, and their scalable model-free implementation under limited feedback that motivates blind or bandit approaches. The proposed framework aspires to offer a stepping stone that leads to systematic designs and analysis of task-specific learning and management schemes for IoT, along with a host of new research directions to build on.Comment: Submitted on June 15 to Proceeding of IEEE Special Issue on Adaptive and Scalable Communication Network

    Internet of Vehicles and Real-Time Optimization Algorithms: Concepts for Vehicle Networking in Smart Cities

    Get PDF
    Achieving sustainable freight transport and citizens’ mobility operations in modern cities are becoming critical issues for many governments. By analyzing big data streams generated through IoT devices, city planners now have the possibility to optimize traffic and mobility patterns. IoT combined with innovative transport concepts as well as emerging mobility modes (e.g., ridesharing and carsharing) constitute a new paradigm in sustainable and optimized traffic operations in smart cities. Still, these are highly dynamic scenarios, which are also subject to a high uncertainty degree. Hence, factors such as real-time optimization and re-optimization of routes, stochastic travel times, and evolving customers’ requirements and traffic status also have to be considered. This paper discusses the main challenges associated with Internet of Vehicles (IoV) and vehicle networking scenarios, identifies the underlying optimization problems that need to be solved in real time, and proposes an approach to combine the use of IoV with parallelization approaches. To this aim, agile optimization and distributed machine learning are envisaged as the best candidate algorithms to develop efficient transport and mobility systems

    Cognition-Based Networks: A New Perspective on Network Optimization Using Learning and Distributed Intelligence

    Get PDF
    IEEE Access Volume 3, 2015, Article number 7217798, Pages 1512-1530 Open Access Cognition-based networks: A new perspective on network optimization using learning and distributed intelligence (Article) Zorzi, M.a , Zanella, A.a, Testolin, A.b, De Filippo De Grazia, M.b, Zorzi, M.bc a Department of Information Engineering, University of Padua, Padua, Italy b Department of General Psychology, University of Padua, Padua, Italy c IRCCS San Camillo Foundation, Venice-Lido, Italy View additional affiliations View references (107) Abstract In response to the new challenges in the design and operation of communication networks, and taking inspiration from how living beings deal with complexity and scalability, in this paper we introduce an innovative system concept called COgnition-BAsed NETworkS (COBANETS). The proposed approach develops around the systematic application of advanced machine learning techniques and, in particular, unsupervised deep learning and probabilistic generative models for system-wide learning, modeling, optimization, and data representation. Moreover, in COBANETS, we propose to combine this learning architecture with the emerging network virtualization paradigms, which make it possible to actuate automatic optimization and reconfiguration strategies at the system level, thus fully unleashing the potential of the learning approach. Compared with the past and current research efforts in this area, the technical approach outlined in this paper is deeply interdisciplinary and more comprehensive, calling for the synergic combination of expertise of computer scientists, communications and networking engineers, and cognitive scientists, with the ultimate aim of breaking new ground through a profound rethinking of how the modern understanding of cognition can be used in the management and optimization of telecommunication network

    Learning Augmented Optimization for Network Softwarization in 5G

    Get PDF
    The rapid uptake of mobile devices and applications are posing unprecedented traffic burdens on the existing networking infrastructures. In order to maximize both user experience and investment return, the networking and communications systems are evolving to the next gen- eration – 5G, which is expected to support more flexibility, agility, and intelligence towards provisioned services and infrastructure management. Fulfilling these tasks is challenging, as nowadays networks are increasingly heterogeneous, dynamic and expanded with large sizes. Network softwarization is one of the critical enabling technologies to implement these requirements in 5G. In addition to these problems investigated in preliminary researches about this technology, many new emerging application requirements and advanced opti- mization & learning technologies are introducing more challenges & opportunities for its fully application in practical production environment. This motivates this thesis to develop a new learning augmented optimization technology, which merges both the advanced opti- mization and learning techniques to meet the distinct characteristics of the new application environment. To be more specific, the abstracts of the key contents in this thesis are listed as follows: • We first develop a stochastic solution to augment the optimization of the Network Function Virtualization (NFV) services in dynamical networks. In contrast to the dominant NFV solutions applied for the deterministic networking environments, the inherent network dynamics and uncertainties from 5G infrastructure are impeding the rollout of NFV in many emerging networking applications. Therefore, Chapter 3 investigates the issues of network utility degradation when implementing NFV in dynamical networks, and proposes a robust NFV solution with full respect to the underlying stochastic features. By exploiting the hierarchical decision structures in this problem, a distributed computing framework with two-level decomposition is designed to facilitate a distributed implementation of the proposed model in large-scale networks. • Next, Chapter 4 aims to intertwin the traditional optimization and learning technologies. In order to reap the merits of both optimization and learning technologies but avoid their limitations, promissing integrative approaches are investigated to combine the traditional optimization theories with advanced learning methods. Subsequently, an online optimization process is designed to learn the system dynamics for the network slicing problem, another critical challenge for network softwarization. Specifically, we first present a two-stage slicing optimization model with time-averaged constraints and objective to safeguard the network slicing operations in time-varying networks. Directly solving an off-line solution to this problem is intractable since the future system realizations are unknown before decisions. To address this, we combine the historical learning and Lyapunov stability theories, and develop a learning augmented online optimization approach. This facilitates the system to learn a safe slicing solution from both historical records and real-time observations. We prove that the proposed solution is always feasible and nearly optimal, up to a constant additive factor. Finally, simulation experiments are also provided to demonstrate the considerable improvement of the proposals. • The success of traditional solutions to optimizing the stochastic systems often requires solving a base optimization program repeatedly until convergence. For each iteration, the base program exhibits the same model structure, but only differing in their input data. Such properties of the stochastic optimization systems encourage the work of Chapter 5, in which we apply the latest deep learning technologies to abstract the core structures of an optimization model and then use the learned deep learning model to directly generate the solutions to the equivalent optimization model. In this respect, an encoder-decoder based learning model is developed in Chapter 5 to improve the optimization of network slices. In order to facilitate the solving of the constrained combinatorial optimization program in a deep learning manner, we design a problem-specific decoding process by integrating program constraints and problem context information into the training process. The deep learning model, once trained, can be used to directly generate the solution to any specific problem instance. This avoids the extensive computation in traditional approaches, which re-solve the whole combinatorial optimization problem for every instance from the scratch. With the help of the REINFORCE gradient estimator, the obtained deep learning model in the experiments achieves significantly reduced computation time and optimality loss
    corecore