27,926 research outputs found

    Deep Neural Network and Data Augmentation Methodology for off-axis iris segmentation in wearable headsets

    Full text link
    A data augmentation methodology is presented and applied to generate a large dataset of off-axis iris regions and train a low-complexity deep neural network. Although of low complexity the resulting network achieves a high level of accuracy in iris region segmentation for challenging off-axis eye-patches. Interestingly, this network is also shown to achieve high levels of performance for regular, frontal, segmentation of iris regions, comparing favorably with state-of-the-art techniques of significantly higher complexity. Due to its lower complexity, this network is well suited for deployment in embedded applications such as augmented and mixed reality headsets

    A New Digital Watermarking Algorithm Using Combination of Least Significant Bit (LSB) and Inverse Bit

    Full text link
    In this paper, we introduce a new digital watermarking algorithm using least significant bit (LSB). LSB is used because of its little effect on the image. This new algorithm is using LSB by inversing the binary values of the watermark text and shifting the watermark according to the odd or even number of pixel coordinates of image before embedding the watermark. The proposed algorithm is flexible depending on the length of the watermark text. If the length of the watermark text is more than ((MxN)/8)-2 the proposed algorithm will also embed the extra of the watermark text in the second LSB. We compare our proposed algorithm with the 1-LSB algorithm and Lee's algorithm using Peak signal-to-noise ratio (PSNR). This new algorithm improved its quality of the watermarked image. We also attack the watermarked image by using cropping and adding noise and we got good results as well.Comment: 8 pages, 6 figures and 4 tables; Journal of Computing, Volume 3, Issue 4, April 2011, ISSN 2151-961

    Securing Interactive Sessions Using Mobile Device through Visual Channel and Visual Inspection

    Full text link
    Communication channel established from a display to a device's camera is known as visual channel, and it is helpful in securing key exchange protocol. In this paper, we study how visual channel can be exploited by a network terminal and mobile device to jointly verify information in an interactive session, and how such information can be jointly presented in a user-friendly manner, taking into account that the mobile device can only capture and display a small region, and the user may only want to authenticate selective regions-of-interests. Motivated by applications in Kiosk computing and multi-factor authentication, we consider three security models: (1) the mobile device is trusted, (2) at most one of the terminal or the mobile device is dishonest, and (3) both the terminal and device are dishonest but they do not collude or communicate. We give two protocols and investigate them under the abovementioned models. We point out a form of replay attack that renders some other straightforward implementations cumbersome to use. To enhance user-friendliness, we propose a solution using visual cues embedded into the 2D barcodes and incorporate the framework of "augmented reality" for easy verifications through visual inspection. We give a proof-of-concept implementation to show that our scheme is feasible in practice.Comment: 16 pages, 10 figure

    Ubic: Bridging the gap between digital cryptography and the physical world

    Full text link
    Advances in computing technology increasingly blur the boundary between the digital domain and the physical world. Although the research community has developed a large number of cryptographic primitives and has demonstrated their usability in all-digital communication, many of them have not yet made their way into the real world due to usability aspects. We aim to make another step towards a tighter integration of digital cryptography into real world interactions. We describe Ubic, a framework that allows users to bridge the gap between digital cryptography and the physical world. Ubic relies on head-mounted displays, like Google Glass, resource-friendly computer vision techniques as well as mathematically sound cryptographic primitives to provide users with better security and privacy guarantees. The framework covers key cryptographic primitives, such as secure identification, document verification using a novel secure physical document format, as well as content hiding. To make a contribution of practical value, we focused on making Ubic as simple, easily deployable, and user friendly as possible.Comment: In ESORICS 2014, volume 8712 of Lecture Notes in Computer Science, pp. 56-75, Wroclaw, Poland, September 7-11, 2014. Springer, Berlin, German
    corecore