594 research outputs found

    On relating CTL to Datalog

    Full text link
    CTL is the dominant temporal specification language in practice mainly due to the fact that it admits model checking in linear time. Logic programming and the database query language Datalog are often used as an implementation platform for logic languages. In this paper we present the exact relation between CTL and Datalog and moreover we build on this relation and known efficient algorithms for CTL to obtain efficient algorithms for fragments of stratified Datalog. The contributions of this paper are: a) We embed CTL into STD which is a proper fragment of stratified Datalog. Moreover we show that STD expresses exactly CTL -- we prove that by embedding STD into CTL. Both embeddings are linear. b) CTL can also be embedded to fragments of Datalog without negation. We define a fragment of Datalog with the successor build-in predicate that we call TDS and we embed CTL into TDS in linear time. We build on the above relations to answer open problems of stratified Datalog. We prove that query evaluation is linear and that containment and satisfiability problems are both decidable. The results presented in this paper are the first for fragments of stratified Datalog that are more general than those containing only unary EDBs.Comment: 34 pages, 1 figure (file .eps

    Flow Logic

    Full text link
    Flow networks have attracted a lot of research in computer science. Indeed, many questions in numerous application areas can be reduced to questions about flow networks. Many of these applications would benefit from a framework in which one can formally reason about properties of flow networks that go beyond their maximal flow. We introduce Flow Logics: modal logics that treat flow functions as explicit first-order objects and enable the specification of rich properties of flow networks. The syntax of our logic BFL* (Branching Flow Logic) is similar to the syntax of the temporal logic CTL*, except that atomic assertions may be flow propositions, like >γ> \gamma or ≥γ\geq \gamma, for γ∈N\gamma \in \mathbb{N}, which refer to the value of the flow in a vertex, and that first-order quantification can be applied both to paths and to flow functions. We present an exhaustive study of the theoretical and practical aspects of BFL*, as well as extensions and fragments of it. Our extensions include flow quantifications that range over non-integral flow functions or over maximal flow functions, path quantification that ranges over paths along which non-zero flow travels, past operators, and first-order quantification of flow values. We focus on the model-checking problem and show that it is PSPACE-complete, as it is for CTL*. Handling of flow quantifiers, however, increases the complexity in terms of the network to PNP{\rm P}^{\rm NP}, even for the LFL and BFL fragments, which are the flow-counterparts of LTL and CTL. We are still able to point to a useful fragment of BFL* for which the model-checking problem can be solved in polynomial time. Finally, we introduce and study the query-checking problem for BFL*, where under-specified BFL* formulas are used for network exploration

    Logics for Unranked Trees: An Overview

    Get PDF
    Labeled unranked trees are used as a model of XML documents, and logical languages for them have been studied actively over the past several years. Such logics have different purposes: some are better suited for extracting data, some for expressing navigational properties, and some make it easy to relate complex properties of trees to the existence of tree automata for those properties. Furthermore, logics differ significantly in their model-checking properties, their automata models, and their behavior on ordered and unordered trees. In this paper we present a survey of logics for unranked trees

    Quantified CTL: Expressiveness and Complexity

    Full text link
    While it was defined long ago, the extension of CTL with quantification over atomic propositions has never been studied extensively. Considering two different semantics (depending whether propositional quantification refers to the Kripke structure or to its unwinding tree), we study its expressiveness (showing in particular that QCTL coincides with Monadic Second-Order Logic for both semantics) and characterise the complexity of its model-checking and satisfiability problems, depending on the number of nested propositional quantifiers (showing that the structure semantics populates the polynomial hierarchy while the tree semantics populates the exponential hierarchy)

    Numerical Integration and Dynamic Discretization in Heuristic Search Planning over Hybrid Domains

    Full text link
    In this paper we look into the problem of planning over hybrid domains, where change can be both discrete and instantaneous, or continuous over time. In addition, it is required that each state on the trajectory induced by the execution of plans complies with a given set of global constraints. We approach the computation of plans for such domains as the problem of searching over a deterministic state model. In this model, some of the successor states are obtained by solving numerically the so-called initial value problem over a set of ordinary differential equations (ODE) given by the current plan prefix. These equations hold over time intervals whose duration is determined dynamically, according to whether zero crossing events take place for a set of invariant conditions. The resulting planner, FS+, incorporates these features together with effective heuristic guidance. FS+ does not impose any of the syntactic restrictions on process effects often found on the existing literature on Hybrid Planning. A key concept of our approach is that a clear separation is struck between planning and simulation time steps. The former is the time allowed to observe the evolution of a given dynamical system before committing to a future course of action, whilst the later is part of the model of the environment. FS+ is shown to be a robust planner over a diverse set of hybrid domains, taken from the existing literature on hybrid planning and systems.Comment: 17 page

    Time For Stubborn Game Reductions

    Get PDF

    A Supervisory Control Algorithm Based on Property-Directed Reachability

    Full text link
    We present an algorithm for synthesising a controller (supervisor) for a discrete event system (DES) based on the property-directed reachability (PDR) model checking algorithm. The discrete event systems framework is useful in both software, automation and manufacturing, as problems from those domains can be modelled as discrete supervisory control problems. As a formal framework, DES is also similar to domains for which the field of formal methods for computer science has developed techniques and tools. In this paper, we attempt to marry the two by adapting PDR to the problem of controller synthesis. The resulting algorithm takes as input a transition system with forbidden states and uncontrollable transitions, and synthesises a safe and minimally-restrictive controller, correct-by-design. We also present an implementation along with experimental results, showing that the algorithm has potential as a part of the solution to the greater effort of formal supervisory controller synthesis and verification.Comment: 16 pages; presented at Haifa Verification Conference 2017, the final publication is available at Springer via https://doi.org/10.1007/978-3-319-70389-3_

    Dual Forgetting Operators in the Context of Weakest Sufficient and Strongest Necessary Conditions

    Full text link
    Forgetting is an important concept in knowledge representation and automated reasoning with widespread applications across a number of disciplines. A standard forgetting operator, characterized in [Lin and Reiter'94] in terms of model-theoretic semantics and primarily focusing on the propositional case, opened up a new research subarea. In this paper, a new operator called weak forgetting, dual to standard forgetting, is introduced and both together are shown to offer a new more uniform perspective on forgetting operators in general. Both the weak and standard forgetting operators are characterized in terms of entailment and inference, rather than a model theoretic semantics. This naturally leads to a useful algorithmic perspective based on quantifier elimination and the use of Ackermman's Lemma and its fixpoint generalization. The strong formal relationship between standard forgetting and strongest necessary conditions and weak forgetting and weakest sufficient conditions is also characterized quite naturally through the entailment-based, inferential perspective used. The framework used to characterize the dual forgetting operators is also generalized to the first-order case and includes useful algorithms for computing first-order forgetting operators in special cases. Practical examples are also included to show the importance of both weak and standard forgetting in modeling and representation

    Efficient temporal-logic query checking for presburger systems

    Full text link
    • …
    corecore