3,402 research outputs found

    Characterization of age-related microstructural changes in locus coeruleus and substantia nigra pars compacta.

    Get PDF
    Locus coeruleus (LC) and substantia nigra pars compacta (SNpc) degrade with normal aging, but not much is known regarding how these changes manifest in MRI images, or whether these markers predict aspects of cognition. Here, we use high-resolution diffusion-weighted MRI to investigate microstructural and compositional changes in LC and SNpc in young and older adult cohorts, as well as their relationship with cognition. In LC, the older cohort exhibited a significant reduction in mean and radial diffusivity, but a significant increase in fractional anisotropy compared with the young cohort. We observed a significant correlation between the decrease in LC mean, axial, and radial diffusivities and measures examining cognition (Rey Auditory Verbal Learning Test delayed recall) in the older adult cohort. This observation suggests that LC is involved in retaining cognitive abilities. In addition, we observed that iron deposition in SNpc occurs early in life and continues during normal aging

    Recommendations and guidelines from the ISMRM Diffusion Study Group for preclinical diffusion MRI: Part 1 -- In vivo small-animal imaging

    Full text link
    The value of in vivo preclinical diffusion MRI (dMRI) is substantial. Small-animal dMRI has been used for methodological development and validation, characterizing the biological basis of diffusion phenomena, and comparative anatomy. Many of the influential works in this field were first performed in small animals or ex vivo samples. The steps from animal setup and monitoring, to acquisition, analysis, and interpretation are complex, with many decisions that may ultimately affect what questions can be answered using the data. This work aims to serve as a reference, presenting selected recommendations and guidelines from the diffusion community, on best practices for preclinical dMRI of in vivo animals. In each section, we also highlight areas for which no guidelines exist (and why), and where future work should focus. We first describe the value that small animal imaging adds to the field of dMRI, followed by general considerations and foundational knowledge that must be considered when designing experiments. We briefly describe differences in animal species and disease models and discuss how they are appropriate for different studies. We then give guidelines for in vivo acquisition protocols, including decisions on hardware, animal preparation, imaging sequences and data processing, including pre-processing, model-fitting, and tractography. Finally, we provide an online resource which lists publicly available preclinical dMRI datasets and software packages, to promote responsible and reproducible research. An overarching goal herein is to enhance the rigor and reproducibility of small animal dMRI acquisitions and analyses, and thereby advance biomedical knowledge.Comment: 69 pages, 6 figures, 1 tabl

    Applications of diffusion MRI: Tensor-valued encoding, time-dependent diffusion, and histological validation

    Get PDF
    Diffusion MRI (dMRI) sensitizes the MR signal to the diffusion of water molecules at the microscopic level and thereby non-invasively probes tissue microstructure. This is relevant when determining biological properties of tissues, for example, cancer type and its malignancy. The problem is, however, that dMRI lacks sensitivity and specificity to distinct microstructural features because an image voxel contains vast number of different features that are mapped onto relatively few dMRI observables. To tackle this issue, we aimed at solving two gaps in current knowledge—the first was related to what microstructural aspects are of most importance and the second to how adding new observables to the dMRI measurement could improve brain tumor imaging.In this work, we first investigate the biological underpinnings of dMRI observables—focusing on the degree to which larger-scale microstructural arrangements are of relevance. In Paper I, we investigated the effects of non-straight propagation of axons and found that they are indistinguishable from those originating from the diameter of a straight axon, at least for typical measurements with a clinical scanner. We propose that the use of short diffusion times could help separate them. In Paper II, in a comparison between histology and microimaging of meningioma brain tumors, we quantified to what degree the common biological interpretation of one of the most used dMRI observable holds—mean diffusivity (MD) as reflecting cell density and fractional anisotropy reflecting tissue anisotropy. We found that the local variability in MD was explained in minority of the samples whereas FA in majority by the common interpretations. We suggested additional relevant features such as tumor vascularization, psammoma bodies, microcysts or tissue cohesivity for explaining MD variability.Second, we examined whether a framework that introduces a new measurement observable brings value in intracranial tumor imaging. This new variable is termed the b-tensor shape and is derived from the tensor-valued dMRI paradigm. In Paper IV, we adjusted and shortened by 40 % (from 5 to 3 minutes) a tensor-valued dMRI protocol for clinical imaging of intracranial tumors and applied it to characterize to a wide range of different intracranial tumors. The protocol was also used in clinical studies of patients with intracranial tumors—gliomas and meningiomas—in Paper III and Paper V, respectively. In Paper III, we found that using so-called spherical b-tensor encoding leads to enhanced conspicuity of glioma hyperintensities to white matter in all patients and on average the signal-intensity-ratio increased by 28 %. In Paper V we found that it may also inform on meningiomas preoperatively. The standard deviation of isotropic kurtosis was associated with tumor grade and with and the 10th percentiles of the mean and anisotropic kurtoses with firm tumor consistency. Preoperative knowledge of the consistency is important for the neurosurgeons when choosing the optimal surgical procedure

    Test-retest reliability of structural brain networks from diffusion MRI

    Get PDF
    Structural brain networks constructed from diffusion MRI (dMRI) and tractography have been demonstrated in healthy volunteers and more recently in various disorders affecting brain connectivity. However, few studies have addressed the reproducibility of the resulting networks. We measured the test–retest properties of such networks by varying several factors affecting network construction using ten healthy volunteers who underwent a dMRI protocol at 1.5 T on two separate occasions. Each T1-weighted brain was parcellated into 84 regions-of-interest and network connections were identified using dMRI and two alternative tractography algorithms, two alternative seeding strategies, a white matter waypoint constraint and three alternative network weightings. In each case, four common graph-theoretic measures were obtained. Network properties were assessed both node-wise and per network in terms of the intraclass correlation coefficient (ICC) and by comparing within- and between-subject differences. Our findings suggest that test–retest performance was improved when: 1) seeding from white matter, rather than grey; and 2) using probabilistic tractography with a two-fibre model and sufficient streamlines, rather than deterministic tensor tractography. In terms of network weighting, a measure of streamline density produced better test–retest performance than tract-averaged diffusion anisotropy, although it remains unclear which is a more accurate representation of the underlying connectivity. For the best performing configuration, the global within-subject differences were between 3.2% and 11.9% with ICCs between 0.62 and 0.76. The mean nodal within-subject differences were between 5.2% and 24.2% with mean ICCs between 0.46 and 0.62. For 83.3% (70/84) of nodes, the within-subject differences were smaller than between-subject differences. Overall, these findings suggest that whilst current techniques produce networks capable of characterising the genuine between-subject differences in connectivity, future work must be undertaken to improve network reliability

    Microstructural imaging of the human brain with a 'super-scanner': 10 key advantages of ultra-strong gradients for diffusion MRI

    Get PDF
    The key component of a microstructural diffusion MRI 'super-scanner' is a dedicated high-strength gradient system that enables stronger diffusion weightings per unit time compared to conventional gradient designs. This can, in turn, drastically shorten the time needed for diffusion encoding, increase the signal-to-noise ratio, and facilitate measurements at shorter diffusion times. This review, written from the perspective of the UK National Facility for In Vivo MR Imaging of Human Tissue Microstructure, an initiative to establish a shared 300 mT/m-gradient facility amongst the microstructural imaging community, describes ten advantages of ultra-strong gradients for microstructural imaging. Specifically, we will discuss how the increase of the accessible measurement space compared to a lower-gradient systems (in terms of Δ, b-value, and TE) can accelerate developments in the areas of 1) axon diameter distribution mapping; 2) microstructural parameter estimation; 3) mapping micro-vs macroscopic anisotropy features with gradient waveforms beyond a single pair of pulsed-gradients; 4) multi-contrast experiments, e.g. diffusion-relaxometry; 5) tractography and high-resolution imaging in vivo and 6) post mortem; 7) diffusion-weighted spectroscopy of metabolites other than water; 8) tumour characterisation; 9) functional diffusion MRI; and 10) quality enhancement of images acquired on lower-gradient systems. We finally discuss practical barriers in the use of ultra-strong gradients, and provide an outlook on the next generation of 'super-scanners'

    Optimization of the diffusion-weighted MRI processing pipeline for the longitudinal assessment of the brain microstructure in a rat model of Alzheimer’s disease

    Get PDF
    Tese de mestrado integrado, Engenharia Biomédica e Biofísica (Radiações em Diagnóstico e Terapia) Universidade de Lisboa, Faculdade de Ciências, 2019The mechanism that triggers Alzheimer’s disease (AD) is not well-established, with amyloid plaques, neurofibrillary tangles of tau protein, microgliosis and glucose hypometabolism all likely involved in the early cascade. One main advantage of animal models is the possibility to tease out the impact of each insult on the neurodegeneration. Following an intracerebroventricular (icv) injection of streptozotocin (STZ), rats and monkeys develop impaired brain glucose metabolism, i.e. “diabetes of the brain”. Nu-merous studies have reported AD-like features in icv-STZ animals, but this model has never been char-acterized in terms of Magnetic Resonance Imaging (MRI)-derived biomarkers beyond structural brain atrophy. White matter degeneration has been proposed as a promising biomarker for AD that well pre-cedes cortical atrophy and correlates strongly with disease severity. Therefore, this project proposes a longitudinal study of white matter degeneration in icv-STZ rats using diffusion MRI. An existing image processing pipeline was primarily used to obtain preliminary results and propose an optimization strat-egy to improve it in terms of data quality and reliability. These strategies were tested and implemented in the pipeline when confirmed to be valuable, in order to achieve results as reproducible as possible and find the spatio-temporal pattern of brain degeneration in this animal model. All experiments were approved by the local Service for Veterinary Affairs. Male Wistar rats (N=18) (236±11 g) underwent a bilateral icv-injection of either streptozotocin (3 mg/kg, STZ group, N=10) or buffer (control group, CTL, N=8). Rats were scanned at four timepoints following surgery on a 14 T Varian system. Diffusion data were acquired using a semi-adiabatic SE-EPI PGSE sequence as follows: 4 (b=0 ms/μm2), 12 (b=0.8 ms/μm2), 16 (b=1.3 ms/μm2) and 30 (b=2 ms/μm2) directions; TE/TR=48/2500 ms, 9 coronal 1 mm slices, δ/Δ=4/27 ms, FOV=23x17 mm2, matrix=128x64 and 4 shots. The existing image processing pipeline included image denoising and eddy-correction. Moreover, diffusion and kurtosis tensors were calculated for each voxel, producing parametric maps of fractional anisotropy (FA), mean, axial and radial diffusivity (MD, AxD and RD) and mean, axial and radial kur-tosis (MK, AK and RK). Additionally, the two-compartment WMTI-Watson model was further esti-mated to provide specificity to the microstructure assessment. The following metrics were derived from the model: volume water fraction , parallel intra-axonal diffusivity , parallel ,║ and perpendicular extra-axonal diffusivities ,ꓕ and dispersion of fiber orientations 2. Since the model allows for two mathematical solutions, the >,║ solution was retained based on recent evidence. Considering pre-vious findings, the corpus callosum, cingulum, fornix and fimbria were chosen as white matter regions of interest (ROIs) and automatically segmented using anatomical atlas-based registration. Mean diffu-sion metrics were calculated in each ROI for each dataset. CTL and STZ groups were compared using two-sided t-tests at each timepoint. Within-group longitudinal changes were assessed using one-way ANOVA. Because of the small cohort, statistical analysis excluded the last time point. In the course of this project, strategies to optimize the existing pipeline were developed and tested. The existing brain atlas template was supplemented with white matter labels, rat brain extraction was semi-automated, and bias field correction of anatomical data was added before registration. Ventricle enlargement is typically reported in icv-STZ animals and normally constitutes an issue of misalignment in registration. In order to better match the label ROIs with the respective underlying tissue, several registration procedures were tested with different FA and color-coded FA template images. Color-coded FA-based registration dramatically improved the segmentation of the corpus callosum and the fimbria and reliability of diffusion metrics extracted from these regions. Moreover, additional fiber metrics were extracted from a newly developed tractography pipeline to compare with tensors metrics and finally, tensors metrics were evaluated in the gray matter for a more comprehensive spatio-temporal character-ization of brain degeneration. Results from statistical analysis were obtained after implementing the successful optimization strat-egies into the pipeline. There were few significant differences within groups over time. However, be-tween-group differences at each time point were more pronounced. White matter microstructure altera-tions were consistent with previous studies of histology and cognitive performance of the icv-STZ model. Changes in tensors metrics indicate early axonal injury in the fimbria and fornix at 2 weeks after injection, a period of potential recovery at 6 weeks after injection and late axonal injury at 13 weeks in all ROIs. The WMTI-Watson biophysical model provided specificity to the underlying microstructure, by showing intra-axonal damage in the fimbria and corpus callosum as early as 2 weeks, followed by a recover period and definite axonal loss at 13 weeks after injection. Results from tensors metrics and the WMTI-Watson model are not only complementary, they are consistent with each other and with previously-established trends for structural thickness, memory per-formance, amyloid deposition and inflammation. The icv-STZ model displays white matter changes in tracts reportedly affected by AD, while the degeneration is induced primarily by impaired brain glucose metabolism. The icv-STZ constitutes an excellent model to reproduce sporadic AD and should allow to further explore the hypothesis of AD being “type III diabetes”. The combination of diffusion information extracted from tensor imaging and biophysical modelling is a promising set of tools to assess white matter in the AD brain and might be the upcoming strategy to assess the human brain. Regarding future work, it will focus on estimating the correlation between microstructural alterations and functional con-nectivity (from resting-state functional MRI), glucose hypometabolism (from FDG-PET), and patholog-ical features (from histological stainings) – all currently under processing at CIBM. Tractography is a cutting-edge methodology to assess brain connectivity and the pipeline created could be further devel-oped to improve understanding and support diffusion metrics. The relationship between white and gray matter will also improve the understanding of spatio-temporal degeneration and the progression nature of the disease.O mecanismo que desencadeia a doença de Alzheimer (DA) não é bem conhecido, contudo sabe-se que a presença de placas amilóides e de emaranhados neurofibrilares da proteína tau, microgliose e ainda hipometabolismo de glucose estão envolvidos na fase inicial da cascata de desenvolvimento da doença. A principal vantagem dos modelos animais é justamente a possibilidade de estudar individualmente o impacto de cada um destes mecanismos no processo de neurodegeneração. Após uma injeção intracere-broventricular (icv) de estreptozotocina (STZ), várias espécies de animais mostraram um metabolismo anormal de glucose no cérebro, processo que foi referido como “diabetes do cérebro”. Vários estudos demonstraram que animais icv-STZ são portadores de características típicas de DA, mas este modelo animal nunca foi estudado em termos de biomarcadores derivados de técnicas de imagem por ressonân-cia magnética (IRM), exceto atrofia estrutural do cérebro. Um biomarcador promissor de DA que se acredita preceder a atrofia do córtex cerebral é a degeneração da matéria branca do cérebro, uma vez que foi fortemente correlacionado com a progressão e gravidade da doença. Logo, este projeto propõe um estudo longitudinal da degeneração da matéria branca em ratazanas icv-STZ utilizando IRM de di-fusão. O plano de processamento de imagem existente foi utilizado primeiramente para obter resultados preliminares e viabilizar a proposta de estratégias de otimização da mesma, em termos de melhoramento da qualidade de imagem e credibilidade das variáveis extraídas das imagens resultantes. Estas estratégias foram testadas e implementadas no plano de processamento quando a sua performance confirmou ser de valor, para que os resultados fossem o mais reproduzíveis possível em caracterizar a distribuição espácio-temporal da degeneração do cérebro neste modelo animal. Todos os procedimentos aqui descritos foram aprovados pelo serviço local dos assuntos veterinários. Ratazanas macho Wistar (N=18, 236±11 g) foram submetidas a uma injeção icv de STZ (3 mg/kg) no caso do grupo infetado (N=10) ou de um buffer no caso do grupo de controlo (N=8). As ratazanas foram examinadas no scanner de IRM do tipo Varian de 14 T em quatro momentos no tempo: 2, 6, 13 e 21 semanas após a injeção. As imagens por difusão foram adquiridas com uma sequência semi-adiabática spin-echo EPI PGSE com os seguintes parâmetros: 4 (b=0), 12 (b=0.8 ms/μm2), 16 (b=1.3 ms/μm2) and 30 (b=2 ms/μm2) direções; TE/TR=48/2500 ms, 9 secções coronais de 1 mm, δ/Δ=4/27 ms, FOV=23x17 mm2, matriz=128x64 e 4 shots. O plano existente de processamento de imagem incluía a correção das imagens ao nível de ruído e correntes-eddy. Posteriormente, os tensores de difusão e curtose foram estimados para cada voxel e os mapas paramétricos de anisotropia fracional (FA), difusão média, axial e radial (MD, AD e RD) e cur-tose média, axial e radial (MK, AK e RK) foram calculados. Adicionalmente, um modelo de difusão de água nas fibras da matéria branca foi utilizado para providenciar maior especificidade ao estudo da microestrutura do cérebro. Como tal, o modelo de dois compartimentos denominado WMTI-Watson foi também estimado e as seguintes variáveis foram derivadas do mesmo: a fração do volume de água , a difusividade paralela intra-axonal , as difusividades paralela ,║ e perpendicular ,ꓕ extra-axonais e, finalmente, a orientação da dispersão axonal 2. Este modelo matemático tem duas soluções possíveis dada a sua natureza quadrática, pelo que a solução >,║ foi imposta com base em evidências re-centes. Considerando estudos anteriores, as regiões de interesse (RDIs) da matéria branca escolhidas para analisar a microestrutura cerebral foram o corpo caloso, o cíngulo, a fimbria e a fórnix. Estes foram automaticamente segmentados através de registo de imagem de um atlas das regiões do cérebro da rata-zana e as médias das medidas extraídas dos tensores de difusão e curtose e ainda do modelo biofísico neuronal foram calculadas em cada RDI para cada conjunto de imagens obtidas. Os dois grupos de teste e controlo foram comparados usando testes t de Student bilaterais em cada momento do tempo, e a comparação das alterações longitudinais em cada grupo foi feita usando uma ANOVA. Devido ao baixo número de amostras, o último momento no tempo às 21 semanas foi excluído da análise. No decorrer deste projeto, várias estratégias para otimizar o processamento de imagem ou comple-mentar a análise da informação disponível foram testadas. Nomeadamente, o atlas cerebral da ratazana foi aperfeiçoado relativamente às regiões de matéria branca, a segmentação do cérebro foi testada com algoritmos automáticos e a correção do bias field em imagens estruturais de IRM foi adicionada ao plano antes do registo de imagem. O aumento dos ventrículos cerebrais é uma característica frequente em animais icv-STZ, constituindo um problema de alinhamento nos métodos de registo de imagem. No sentido de otimizar a correspondência entre as regiões do atlas e as respetivas regiões na imagem estru-tural e por difusão, vários procedimentos de registo de imagem foram testados. O co-registo de imagem convencional utiliza imagens estruturais para normalizar o espaço das imagens por difusão, no entanto os mapas paramétricos de FA têm vindo a substituir este conceito dado o excelente contraste que provi-denciam entre a matéria branca e cinzenta do cérebro. Mapas de FA com diferentes direções predomi-nantes mostraram uma melhoria significante da segmentação do corpo caloso e da fimbria e também do poder estatístico das variáveis extraídas destas RDIs. Adicionalmente, um novo plano de processamento de tratografia foi construído de raiz no âmbito deste projeto para extrair variáveis adicionais das fibras de interesse e compará-las com as variáveis de difusão obtidas por análise voxel-a-voxel. Por último, as variáveis calculadas através dos tensores de difusão e curtose foram avaliadas na matéria cinzenta do cérebro para uma caracterização espácio-temporal da degeneração cerebral na DA. Os resultados da análise estatística foram obtidos após integrar no plano de processamento as estra-tégias que mostraram valorizar o projeto em termos de qualidade de imagem ou credibilidade das vari-áveis. Houve poucas diferenças significativas ao longo do tempo em cada grupo, no entanto as diferen-ças entre grupos foram bastante acentuadas. As alterações ao nível da microestrutura da matéria branca foram consistentes com estudos prévios em animais icv-STZ usando métodos histológicos e avaliações das suas capacidades cognitivas. Alterações nas variáveis extraídas dos tensores indicaram deficiência axonal inicial na fimbria e no fórnix 2 semanas após injeção no grupo de teste, um potencial período de recuperação às 6 semanas e novamente deficiência axonal às 13 semanas, sendo que neste período tardio todas as RDIs foram afetadas. O modelo biofísico WMTI-Watson confirmou aumentar especificidade ao estudo da microestrutura, visto que demostrou danos intra-axonais na fimbria e no corpo caloso 2 semanas após injeção, seguidos de um período de recuperação e de perda de estrutura axonal definitiva às 13 semanas em todas as RDIs. Não só estes dois métodos de análise de IRM de difusão se complementam, como são também con-sistentes entre eles e com as tendências de alterações ao longo do tempo descritas noutros estudos. Além disso, o animal icv-STZ mostrou alterações características da DA, mesmo tendo a degeneração cerebral sido induzida pela disrupção do metabolismo de glucose no cérebro. Como tal, este modelo animal é excelente para reproduzir a doença e deverá continuar a ser avaliado nas diferentes áreas multidiscipli-nares para explorar a hipótese de a DA ser desencadeada pela falha do sistema insulina/glucose. A com-binação da informação de difusão obtida dos tensores e da modelação da difusão neuronal provou ser uma ferramenta promissora no estudo das fibras da matéria branca do cérebro e poderá vir a ser o desafio futuro no que toca a investigação clínica da DA. Este estudo focar-se-á em correlacionar as alterações microestruturais aqui descritas com dados de conectividade funcional (obtida por IRM funcional em repouso), hipometabolismo de glucose (por FDG-PET) e outras características patológicas (por colora-ção histológica) – todos já em curso no CIBM. Tratografia é a metodologia topo de gama para aceder à conetividade cerebral e o plano de processamento gerado neste projeto poderá continuar a ser desenvol-vido no futuro para informação adicional, assim como a relação entre a matéria branca e cinzenta poderá suplementar a compreensão da progressão da doença no espaço e no tempo

    Double diffusion encoding and applications for biomedical imaging

    Full text link
    Diffusion Magnetic Resonance Imaging (dMRI) is one of the most important contemporary non-invasive modalities for probing tissue structure at the microscopic scale. The majority of dMRI techniques employ standard single diffusion encoding (SDE) measurements, covering different sequence parameter ranges depending on the complexity of the method. Although many signal representations and biophysical models have been proposed for SDE data, they are intrinsically limited by a lack of specificity. Advanced dMRI methods have been proposed to provide additional microstructural information beyond what can be inferred from SDE. These enhanced contrasts can play important roles in characterizing biological tissues, for instance upon diseases (e.g. neurodegenerative, cancer, stroke), aging, learning, and development. In this review we focus on double diffusion encoding (DDE), which stands out among other advanced acquisitions for its versatility, ability to probe more specific diffusion correlations, and feasibility for preclinical and clinical applications. Various DDE methodologies have been employed to probe compartment sizes (Section 3), decouple the effects of microscopic diffusion anisotropy from orientation dispersion (Section 4), probe displacement correlations, study exchange, or suppress fast diffusing compartments (Section 6). DDE measurements can also be used to improve the robustness of biophysical models (Section 5) and study intra-cellular diffusion via magnetic resonance spectroscopy of metabolites (Section 7). This review discusses all these topics as well as important practical aspects related to the implementation and contrast in preclinical and clinical settings (Section 9) and aims to provide the readers a guide for deciding on the right DDE acquisition for their specific application
    corecore