8 research outputs found

    Development and characterization of a standardized docking system for small spacecraft

    Get PDF
    Since the first mating manoeuvre in space, performed in 1966, many different docking mechanisms were developed, mainly for large manned spacecraft. The few systems recently conceived for small satellites have never been verified in space nor scaled to CubeSat size. In the near future, small spacecraft docking procedures could acquire great importance due to the need to share resources between clusters of low-weight and low-cost vehicles: in fact, small spacecraft market is rapidly growing, focusing on commercial low risk application, low budget scientific and educational missions. In this context, this document presents a novel docking mechanism to provide small spacecraft with the ability to join and separate in space, to realize multi-body platforms able to rearrange, be repaired or updated, thus overcoming the actual on board limitations of single small-scale satellites. As for now, the few proposed docking ports present (1) simple probe-drogue interfaces, unable to dock with same-gender ports, or (2) androgynous geometries, that can overcome that problem, but usually employing complex and non-axis-symmetric latches to perform the docking manoeuvre, that would demand robust and stringent navigation and control systems. The proposed solution overcomes the aforementioned drawbacks, using a semi-androgynous shape-shifting mechanism that actuating one interface changes the port into a “drogue" configuration, letting the other port penetrate it and closing around to create a solid joint. The mechanism design through the requirement definition and a trade-off between different concepts is presented, followed by the analysis of the dynamic behaviour of the selected solution, with particular attention to two aspects, i.e. the loads transmitted between the mating ports and the alignment tolerances requested to perform successful docking manoeuvres. Such analysis led to the definition of an instrumented prototype to verify the solution through simple validation tests, which demonstrated the mechanism operations and defined the alignment ranges, that lie in the range of +- 15 mm and up to 6 degrees. Last, a comparison with SPHERES UDP is presented, as part of the activities performed during a visit period at MIT Space Systems Laboratory

    Visual Servo Based Space Robotic Docking for Active Space Debris Removal

    Get PDF
    This thesis developed a 6DOF pose detection algorithm using machine learning capable of providing the orientation and location of an object in various lighting conditions and at different angles, for the purposes of space robotic rendezvous and docking control. The computer vision algorithm was paired with a virtual robotic simulation to test the feasibility of using the proposed algorithm for visual servo. This thesis also developed a method for generating virtual training images and corresponding ground truth data including both location and orientation information. Traditional computer vision techniques struggle to determine the 6DOF pose of an object when certain colors or edges are not found, therefore training a network is an optimal choice. The 6DOF pose detection algorithm was implemented on MATLAB and Python. The robotic simulation was implemented on Simulink and ROS Gazebo. Finally, the generation of training data was done with Python and Blender

    Aerospace medicine and biology: A continuing bibliography with indexes (supplement 376)

    Get PDF
    This bibliography lists 265 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during Jun. 1993. Subject coverage includes: aerospace medicine and physiology, life support systems and man/system technology, protective clothing, exobiology and extraterrestrial life, planetary biology, and flight crew behavior and performance

    Robotic Manipulation and Capture in Space: A Survey

    Get PDF
    Space exploration and exploitation depend on the development of on-orbit robotic capabilities for tasks such as servicing of satellites, removing of orbital debris, or construction and maintenance of orbital assets. Manipulation and capture of objects on-orbit are key enablers for these capabilities. This survey addresses fundamental aspects of manipulation and capture, such as the dynamics of space manipulator systems (SMS), i.e., satellites equipped with manipulators, the contact dynamics between manipulator grippers/payloads and targets, and the methods for identifying properties of SMSs and their targets. Also, it presents recent work of sensing pose and system states, of motion planning for capturing a target, and of feedback control methods for SMS during motion or interaction tasks. Finally, the paper reviews major ground testing testbeds for capture operations, and several notable missions and technologies developed for capture of targets on-orbit

    Systematic literature review of validation methods for AI systems

    Get PDF
    Context: Artificial intelligence (AI) has made its way into everyday activities, particularly through new techniques such as machine learning (ML). These techniques are implementable with little domain knowledge. This, combined with the difficulty of testing AI systems with traditional methods, has made system trustworthiness a pressing issue. Objective: This paper studies the methods used to validate practical AI systems reported in the literature. Our goal is to classify and describe the methods that are used in realistic settings to ensure the dependability of AI systems. Method: A systematic literature review resulted in 90 papers. Systems presented in the papers were analysed based on their domain, task, complexity, and applied validation methods. Results: The validation methods were synthesized into a taxonomy consisting of trial, simulation, model-centred validation, and expert opinion. Failure monitors, safety channels, redundancy, voting, and input and output restrictions are methods used to continuously validate the systems after deployment. Conclusions: Our results clarify existing strategies applied to validation. They form a basis for the synthesization, assessment, and refinement of AI system validation in research and guidelines for validating individual systems in practice. While various validation strategies have all been relatively widely applied, only few studies report on continuous validation.Peer reviewe

    Acceptance in Incomplete Argumentation Frameworks

    Get PDF
    A Abstract argumentation frameworks (AFs), originally proposed by Dung, constitute a central formal model for the study of computational aspects of argumentation in AI. Credulous and skeptical acceptance of arguments in a given AF are well-studied problems both in terms of theoretical analysis-especially computational complexity-and the development of practical decision procedures for the problems. However, AFs make the assumption that all attacks between arguments are certain (i.e., present attacks are known to exist, and missing attacks are known to not exist), which can in various settings be a restrictive assumption. A generalization of AFs to incomplete AFs was recently proposed as a formalism that allows the representation of both uncertain attacks and uncertain arguments in AFs. In this article, we explore the impact of allowing for modeling such uncertainties in AFs on the computational complexity of natural generalizations of acceptance problems to incomplete AFs under various central AF semantics. Complementing the complexity-theoretic analysis, we also develop the first practical decision procedures for all of the NP-hard variants of acceptance in incomplete AFs. In terms of complexity analysis, we establish a full complexity landscape, showing that depending on the variant of acceptance and property/semantics, the complexity of acceptance in incomplete AFs ranges from polynomial-time decidable to completeness for Sigma(p)(3). In terms of algorithms, we show through an extensive empirical evaluation that an implementation of the proposed decision procedures, based on boolean satisfiability (SAT) solving, is effective in deciding variants of acceptance under uncertainties. We also establish conditions for what type of atomic changes are guaranteed to be redundant from the perspective of preserving extensions of completions of incomplete AFs, and show that the results allow for considerably improving the empirical efficiency of the proposed SAT-based counterexample-guided abstraction refinement algorithms for acceptance in incomplete AFs for problem variants with complexity beyond NP. (C) 2021 The Authors. Published by Elsevier B.V.Peer reviewe

    Third International Symposium on Artificial Intelligence, Robotics, and Automation for Space 1994

    Get PDF
    The Third International Symposium on Artificial Intelligence, Robotics, and Automation for Space (i-SAIRAS 94), held October 18-20, 1994, in Pasadena, California, was jointly sponsored by NASA, ESA, and Japan's National Space Development Agency, and was hosted by the Jet Propulsion Laboratory (JPL) of the California Institute of Technology. i-SAIRAS 94 featured presentations covering a variety of technical and programmatic topics, ranging from underlying basic technology to specific applications of artificial intelligence and robotics to space missions. i-SAIRAS 94 featured a special workshop on planning and scheduling and provided scientists, engineers, and managers with the opportunity to exchange theoretical ideas, practical results, and program plans in such areas as space mission control, space vehicle processing, data analysis, autonomous spacecraft, space robots and rovers, satellite servicing, and intelligent instruments

    41st Aerospace Mechanisms Symposium

    Get PDF
    The proceedings of the 41st Aerospace Mechanisms Symposium are reported. JPL hosted the conference, which was held in Pasadena Hilton, Pasadena, California on May 16-18, 2012. Lockheed Martin Space Systems cosponsored the symposium. Technology areas covered include gimbals and positioning mechanisms, components such as hinges and motors, CubeSats, tribology, and Mars Science Laboratory mechanisms
    corecore