113,214 research outputs found

    Validity and Reliability of an Inertial Device for Measuring Dynamic Weight-Bearing Ankle Dorsiflexion

    Get PDF
    A decrease in ankle dorsiflexion causes changes in biomechanics, and different instruments have been used for ankle dorsiflexion testing under static conditions. Consequently, the industry of inertial sensors has developed easy-to-use devices, which measure dynamic ankle dorsiflexion and provide additional parameters such as velocity, acceleration, or movement deviation. Therefore, the aims of this study were to analyze the concurrent validity and test-retest reliability of an inertial device for measuring dynamic weight-bearing ankle dorsiflexion. Sixteen participants were tested using an inertial device (WIMU) and a digital inclinometer. Ankle dorsiflexion from left and right ankle repetitions was used for validity analysis, whereas test-retest reliability was analyzed by comparing measurements from the first and second days. The standard error of the measurement (SEM) between the instruments was very low for both ankle measurements (SEM 0.05) even though a significant systematic bias (~1.77°) was found for the right ankle (d = 0.79). R2 was very close to 1 in the left and right ankles (R2 = 0.85–0.89) as well as the intraclass correlation coefficient (ICC > 0.95). Test-retest reliability analysis showed that systematic bias was below 1° for both instruments, even though a systematic bias (~1.50°) with small effect size was found in the right ankle (d = 0.49) with WIMU. The ICC was very close to 1 and the coefficient of variation (CV) was lower than 4% in both instruments. Thus, WIMU is a valid and reliable inertial device for measuring dynamic weight-bearing ankle dorsiflexion

    Designing requirements engineering research

    Get PDF
    Engineering sciences study different different topics than natural sciences, and utility is an essential factor in choosing engineering research problems. But despite these differences, research methods for the engineering sciences are no different than research methods for any other kind of science. At most there is a difference in emphasis. In the case of requirements engineering research - and more generally software engineering research - there is a confusion about the relative roles of research and about design and the methods appropriate for each of these activities. This paper analyzes these roles and provides a classification of research methods that can be used in any science—engineering or otherwise

    A systematic approach to the Planck LFI end-to-end test and its application to the DPC Level 1 pipeline

    Full text link
    The Level 1 of the Planck LFI Data Processing Centre (DPC) is devoted to the handling of the scientific and housekeeping telemetry. It is a critical component of the Planck ground segment which has to strictly commit to the project schedule to be ready for the launch and flight operations. In order to guarantee the quality necessary to achieve the objectives of the Planck mission, the design and development of the Level 1 software has followed the ESA Software Engineering Standards. A fundamental step in the software life cycle is the Verification and Validation of the software. The purpose of this work is to show an example of procedures, test development and analysis successfully applied to a key software project of an ESA mission. We present the end-to-end validation tests performed on the Level 1 of the LFI-DPC, by detailing the methods used and the results obtained. Different approaches have been used to test the scientific and housekeeping data processing. Scientific data processing has been tested by injecting signals with known properties directly into the acquisition electronics, in order to generate a test dataset of real telemetry data and reproduce as much as possible nominal conditions. For the HK telemetry processing, validation software have been developed to inject known parameter values into a set of real housekeeping packets and perform a comparison with the corresponding timelines generated by the Level 1. With the proposed validation and verification procedure, where the on-board and ground processing are viewed as a single pipeline, we demonstrated that the scientific and housekeeping processing of the Planck-LFI raw data is correct and meets the project requirements.Comment: 20 pages, 7 figures; this paper is part of the Prelaunch status LFI papers published on JINST: http://www.iop.org/EJ/journal/-page=extra.proc5/jins

    Reliability and validity in comparative studies of software prediction models

    Get PDF
    Empirical studies on software prediction models do not converge with respect to the question "which prediction model is best?" The reason for this lack of convergence is poorly understood. In this simulation study, we have examined a frequently used research procedure comprising three main ingredients: a single data sample, an accuracy indicator, and cross validation. Typically, these empirical studies compare a machine learning model with a regression model. In our study, we use simulation and compare a machine learning and a regression model. The results suggest that it is the research procedure itself that is unreliable. This lack of reliability may strongly contribute to the lack of convergence. Our findings thus cast some doubt on the conclusions of any study of competing software prediction models that used this research procedure as a basis of model comparison. Thus, we need to develop more reliable research procedures before we can have confidence in the conclusions of comparative studies of software prediction models

    Determination of Soybean Oil, Protein and Amino Acid Residues in Soybean Seeds by High Resolution Nuclear Magnetic Resonance (NMRS) and Near Infrared (NIRS)

    Get PDF
    A detailed account is presented of our high resolution nuclear magnetic resonance (HR-NMR) and near infrared (NIR) calibration models, methodologies and validation procedures, together with a large number of composition analyses for soybean seeds. NIR calibrations were developed based on both HR-NMR and analytical chemistry reference data for oil and twelve amino acid residues in mature soybeans and soybean embryos. This is our first report of HR-NMR determinations of amino acid profiles of proteins from whole soybean seeds, without protein extraction from the seed. It was found that the best results for both oil and protein calibrations were obtained with a Partial Least Squares Regression (PLS-1) analysis of our extensive NIR spectral data, acquired with either a DA7000 Dual Diode Array (Si and InGaAs detectors) instrument or with several Fourier Transform NIR (FT-NIR) spectrometers equipped with an integrating sphere/InGaAs detector accessory. In order to extend the bulk soybean samples calibration models to the analysis of single soybean seeds, we have analized in detail the component NIR spectra of all major soybean constituents through spectral deconvolutions for bulk, single and powdered soybean seeds. Baseline variations and light scattering effects in the NIR spectra were corrected, respectively, by calculating the first-order derivatives of the spectra and the Multiplicative Scattering Correction (MSC). The single soybean seed NIR spectra are broadly similar to those of bulk whole soybeans, with the exception of minor peaks in single soybean NIR spectra in the region from 950 to 1,000 nm. Based on previous experience with bulk soybean NIR calibrations, the PLS-1 calibration model was selected for protein, oil and moisture calibrations that we developed for single soybean seed analysis. In order to improve the reliability and robustness of our calibrations with the PLS-1 model we employed standard samples with a wide range of soybean constituent compositions: from 34% to 55% for protein, from 11% to 22% for oil and from 2% to 16% for moisture. Such calibrations are characterized by low standard errors and high degrees of correlation for all major soybean constituents. Morever, we obtained highly resolved NIR chemical images for selected regions of mature soybean embryos that allow for the quantitation of oil and protein components. Recent developments in high-resolution FT-NIR microspectroscopy extend the NIR sensitivity range to the picogram level, with submicron spatial resolution in the component distribution throughout intact soybean seeds and embryos. Such developments are potentially important for biotechnology applications that require rapid and ultra- sensitive analyses, such as those concerned with high-content microarrays in Genomics and Proteomics research. Other important applications of FT-NIR microspectroscopy are envisaged in biomedical research aimed at cancer prevention, the early detection of tumors by NIR-fluorescence, and identification of single cancer cells, or single virus particles in vivo by super-resolution microscopy/ microspectroscopy
    corecore