13 research outputs found

    Review Article: Global Monitoring of Snow Water Equivalent Using High-Frequency Radar Remote Sensing

    Get PDF
    Seasonal snow cover is the largest single component of the cryosphere in areal extent, covering an average of 46 × 106 km2 of Earth\u27s surface (31 % of the land area) each year, and is thus an important expression and driver of the Earth\u27s climate. In recent years, Northern Hemisphere spring snow cover has been declining at about the same rate (∼ −13 % per decade) as Arctic summer sea ice. More than one-sixth of the world\u27s population relies on seasonal snowpack and glaciers for a water supply that is likely to decrease this century. Snow is also a critical component of Earth\u27s cold regions\u27 ecosystems, in which wildlife, vegetation, and snow are strongly interconnected. Snow water equivalent (SWE) describes the quantity of water stored as snow on the land surface and is of fundamental importance to water, energy, and geochemical cycles. Quality global SWE estimates are lacking. Given the vast seasonal extent combined with the spatially variable nature of snow distribution at regional and local scales, surface observations are not able to provide sufficient SWE information. Satellite observations presently cannot provide SWE information at the spatial and temporal resolutions required to address science and high-socio-economic-value applications such as water resource management and streamflow forecasting. In this paper, we review the potential contribution of X- and Ku-band synthetic aperture radar (SAR) for global monitoring of SWE. SAR can image the surface during both day and night regardless of cloud cover, allowing high-frequency revisit at high spatial resolution as demonstrated by missions such as Sentinel-1. The physical basis for estimating SWE from X- and Ku-band radar measurements at local scales is volume scattering by millimeter-scale snow grains. Inference of global snow properties from SAR requires an interdisciplinary approach based on field observations of snow microstructure, physical snow modeling, electromagnetic theory, and retrieval strategies over a range of scales. New field measurement capabilities have enabled significant advances in understanding snow microstructure such as grain size, density, and layering. We describe radar interactions with snow-covered landscapes, the small but rapidly growing number of field datasets used to evaluate retrieval algorithms, the characterization of snowpack properties using radar measurements, and the refinement of retrieval algorithms via synergy with other microwave remote sensing approaches. This review serves to inform the broader snow research, monitoring, and application communities on progress made in recent decades and sets the stage for a new era in SWE remote sensing from SAR measurements

    Study of the speckle noise effects over the eigen decomposition of polarimetric SAR data: a review

    No full text
    This paper is focused on considering the effects of speckle noise on the eigen decomposition of the co- herency matrix. Based on a perturbation analysis of the matrix, it is possible to obtain an analytical expression for the mean value of the eigenvalues and the eigenvectors, as well as for the Entropy, the Anisotroopy and the dif- ferent a angles. The analytical expressions are compared against simulated polarimetric SAR data, demonstrating the correctness of the different expressions.Peer ReviewedPostprint (published version

    Characteristics of Taiga and Tundra Snowpack in Development and Validation of Remote Sensing of Snow

    Get PDF
    Remote sensing of snow is a method to measure snow cover characteristics without direct physical contact with the target from airborne or space-borne platforms. Reliable estimates of snow cover extent and snow properties are vital for several applications including climate change research and weather and hydrological forecasting. Optical remote sensing methods detect the extent of snow cover based on its high reflectivity compared to other natural surfaces. A universal challenge for snow cover mapping is the high spatiotemporal variability of snow properties and heterogeneous landscapes such as the boreal forest biome. The optical satellite sensor’s footprint may extend from tens of meters to a kilometer; the signal measured by the sensor can simultaneously emerge from several target categories within individual satellite pixels. By use of spectral unmixing or inverse model-based methods, the fractional snow cover (FSC) within the satellite image pixel can be resolved from the recorded electromagnetic signal. However, these algorithms require knowledge of the spectral reflectance properties of the targets present within the satellite scene and the accuracy of snow cover maps is dependent on the feasibility of these spectral model parameters. On the other hand, abrupt changes in land cover types with large differences in their snow properties may be located within a single satellite image pixel and complicate the interpretation of the observations. Ground-based in-situ observations can be used to validate the snow parameters derived by indirect methods, but these data are affected by the chosen sampling. This doctoral thesis analyses laboratory-based spectral reflectance information on several boreal snow types for the purpose of the more accurate reflectance representation of snow in mapping method used for the detection of fractional snow cover. Multi-scale reflectance observations representing boreal spectral endmembers typically used in optical mapping of snow cover, are exploited in the thesis. In addition, to support the interpretation of remote sensing observations in boreal and tundra environments, extensive in-situ dataset of snow depth, snow water equivalent and snow density are exploited to characterize the snow variability and to assess the uncertainty and representativeness of these point-wise snow measurements applied for the validation of remote sensing observations. The overall goal is to advance knowledge about the spectral endmembers present in boreal landscape to improve the accuracy of the FSC estimates derived from the remote sensing observations and support better interpretation and validation of remote sensing observations over these heterogeneous landscapes. The main outcome from the work is that laboratory-controlled experiments that exclude disturbing factors present in field circumstances may provide more accurate representation of wet (melting) snow endmember reflectance for the FSC mapping method. The behavior of snow band reflectance is found to be insensitive to width and location differences between visible satellite sensor bands utilized in optical snow cover mapping which facilitates the use of various sensors for the construction of historical data records. The results also reveal the high deviation of snow reflectance due to heterogeneity in snow macro- and microstructural properties. The quantitative statistics of bulk snow properties show that areal averages derived from in-situ measurements and used to validate remote sensing observations are dependent on the measurement spacing and sample size especially over land covers with high absolute snow depth variability, such as barren lands in tundra. Applying similar sampling protocol (sample spacing and sample size) over boreal and tundra land cover types that represent very different snow characteristics will yield to non-equal representativeness of the areal mean values. The extensive datasets collected for this work demonstrate that observations measured at various scales can provide different view angle to the same challenge but at the same time any dataset individually cannot provide a full understanding of the target complexity. This work and the collected datasets directly facilitate further investigation of uncertainty in fractional snow cover maps retrieved by optical remote sensing and the interpretation of satellite observations in boreal and tundra landscapes.Lumen kaukokartoitus on menetelmä, jolla mitataan lumen ominaisuuksia ilmasta tai avaruudesta käsin ilman fyysistä kontaktia kohteeseen. Luotettavat arviot lumipeitteen laajuudesta ja lumen ominaisuuksista ovat elintärkeitä useille menetelmille mukaan lukien ilmastonmuutoksen tutkimus sekä hydrologinen ennustaminen ja sään ennustaminen. Optiset kaukokartoitusmenetelmät havaitsevat lumipeitteen laajuuden lumen korkean heijastavuuden perusteella. Lumen ominaisuuksien korkea ajallinen ja alueellinen vaihtelu sekä heterogeeniset maastotyypit ovat yleinen haaste lumipeitteen laajuuden kaukokartoitukselle. Satelliitin optisen sensorin jalanjälki voi ulottua muutamista kymmenistä metreistä kilometriin; sensorin mittaama signaali voi samanaikaisesti nousta useista eri kohteista saman satelliittipikselin sisällä. Käyttämällä metodeja, joissa pyritään ratkaisemaan erilaisten kohdetyyppien osuus mitatussa signaalissa tai käänteismallintamalla, lumen osuus satelliittipikselin sisällä voidaan ratkaista mitatusta elektromagneettisesta signaalista. Nämä menetelmät kuitenkin vaativat tietoa pikselissä olevien kohteiden – mallimuuttujien – spektraalisista ominaisuuksista. Tuotetun lumipeitekartan tarkkuus on suoraan riippuvainen näille muuttujille asetettujen arvojen käyttökelpoisuudesta. Toisaalta saman satelliittipikselin sisällä lumipeitteen ominaisuuksissa voi olla jyrkkiäkin muutoksia, jotka vaikeuttavat satelliittihavaintojen tulkintaa. Epäsuorilla menetelmillä havaittuja lumen estimaatteja voidaan varmentaa hyödyntämällä maanpinnalla kerättyjä maastohavaintoja, mutta myös nämä aineistot sisältävät epätarkkuutta ja virhettä. Tämä väitöskirja analysoi laboratoriossa useista boreaalisista lumityypeistä kerättyjä spektraalisia mittauksia, joiden tarkoitus on tarjota tarkempia lumen heijastusarvoja hyödynnettäväksi menetelmässä, jota käytetään lumipeitteen laajuuden kartoituksessa. Boreaalisella metsävyöhykkeellä olevia spektraalisia mallimuuttujia, joita tyypillisesti käytetään optisissa lumen kartoitusmenetelmissä, kuvataan väitöstyössä usean eri mittakaavan havainnoilla. Lisäksi mittavaa lumensyvyyden, lumen vesiarvon sekä lumen tiheyden maastomittausaineistoa hyödynnetään kaukokartoitushavaintojen tulkinnan tukemiseksi boreaalisella vyöhykkeellä sekä tundralla. Aineiston avulla kuvataan lumen ominaisuuksien alueellista ja ajallista vaihtelua sekä tutkitaan pistemäisesti kerättyjen maastohavaintojen epätarkkuutta sekä edustavuutta, kun niitä käytetään kaukokartoitushavaintojen validoinnissa. Väitöstyön yleisenä tarkoituksena on edistää tietoutta boreaalisen vyöhykkeen spektraalisista mallimuuttujista, jotta optisella kaukokartoituksella tuotettujen lumipeitehavaintojen tarkkuus paranee ja tukea kaukokartoitushavaintojen parempaa tulkintaa ja validointia epähomogeenisissa satelliittipikseleissä. Väitöstyön pääasiallinen viesti on, että laboratorio-olosuhteissa kerätyillä mittauksilla voidaan tuottaa tarkempia arvoja lumipeitteen kaukokartoitushavaintojen tulkinta-algoritmeille, koska maastomittauksissa läsnä olevia häiritseviä tekijöitä voidaan sulkea pois. Lumipeitteen kaukokartoituksessa hyödynnettävien sensorien hieman toisistaan poikkeavat optiset kaistat eivät näytä merkittävästi vaikuttavan lumen heijastusarvoon. Tämä tukee historiallisten aineistojen rakentamista eri sensoreilla kerätyistä havainnoista. Tulokset myös paljastavat, että lumen heijastusarvoissa on suurta hajontaa, joka liittyy lumen makro- ja mikrostruktruuristen ominaisuuksien vaihteluun. Lisäksi tulokset osoittivat, että maastomittauksista saadut alueelliset lumensyvyyden keskiarvot, joita usein käytetään karkeamman resoluution kaukokartoitushavaintojen validoinnissa, ovat riippuvaisia mittausten välisestä etäisyydestä sekä mittausten lukumäärästä. Näin on erityisesti maanpeiteluokissa, joilla lumensyvyyden vaihtelu on erityisen suurta, kuten paljakat tundralla. Soveltamalla samaa mittausprotokollaa boreaalisiin ja tundran maanpeiteluokkiin, jotka edustavat hyvin erilaisia lumiolosuhteita, saadaan keskenään eriävästi edustavia alueellisia keskiarvoja. Tässä työssä kerätyt laajamittaiset havaintoaineistot osoittavat, että eri mittakaavoilla kerätyt havainnot voivat tarjota eri näkökulman samaan ongelmaan, mutta samaan aikaan yksittäinen havaintoaineisto on riittämätön tarjotakseen täyden ymmärryksen tiettyyn haasteeseen, kuten epähomogeenisen satelliittipikselin tulkintaan. Tämä väitöstyö ja siinä kerätyt aineistot hyödyttävät suoraan tutkimusta, joka koskee lumipeitteen laajuuden optisen kaukokartoituksen epätarkkuuksia sekä satelliittihavaintojen tulkintaa boreaalisella metsävyöhykkeellä sekä tundralla

    Characteristics of Taiga and Tundra Snowpack in Development and Validation of Remote Sensing of Snow

    Get PDF
    Remote sensing of snow is a method to measure snow cover characteristics without direct physical contact with the target from airborne or space-borne platforms. Reliable estimates of snow cover extent and snow properties are vital for several applications including climate change research and weather and hydrological forecasting. Optical remote sensing methods detect the extent of snow cover based on its high reflectivity compared to other natural surfaces. A universal challenge for snow cover mapping is the high spatiotemporal variability of snow properties and heterogeneous landscapes such as the boreal forest biome. The optical satellite sensor’s footprint may extend from tens of meters to a kilometer; the signal measured by the sensor can simultaneously emerge from several target categories within individual satellite pixels. By use of spectral unmixing or inverse model-based methods, the fractional snow cover (FSC) within the satellite image pixel can be resolved from the recorded electromagnetic signal. However, these algorithms require knowledge of the spectral reflectance properties of the targets present within the satellite scene and the accuracy of snow cover maps is dependent on the feasibility of these spectral model parameters. On the other hand, abrupt changes in land cover types with large differences in their snow properties may be located within a single satellite image pixel and complicate the interpretation of the observations. Ground-based in-situ observations can be used to validate the snow parameters derived by indirect methods, but these data are affected by the chosen sampling. This doctoral thesis analyses laboratory-based spectral reflectance information on several boreal snow types for the purpose of the more accurate reflectance representation of snow in mapping method used for the detection of fractional snow cover. Multi-scale reflectance observations representing boreal spectral endmembers typically used in optical mapping of snow cover, are exploited in the thesis. In addition, to support the interpretation of remote sensing observations in boreal and tundra environments, extensive in-situ dataset of snow depth, snow water equivalent and snow density are exploited to characterize the snow variability and to assess the uncertainty and representativeness of these point-wise snow measurements applied for the validation of remote sensing observations. The overall goal is to advance knowledge about the spectral endmembers present in boreal landscape to improve the accuracy of the FSC estimates derived from the remote sensing observations and support better interpretation and validation of remote sensing observations over these heterogeneous landscapes. The main outcome from the work is that laboratory-controlled experiments that exclude disturbing factors present in field circumstances may provide more accurate representation of wet (melting) snow endmember reflectance for the FSC mapping method. The behavior of snow band reflectance is found to be insensitive to width and location differences between visible satellite sensor bands utilized in optical snow cover mapping which facilitates the use of various sensors for the construction of historical data records. The results also reveal the high deviation of snow reflectance due to heterogeneity in snow macro- and microstructural properties. The quantitative statistics of bulk snow properties show that areal averages derived from in-situ measurements and used to validate remote sensing observations are dependent on the measurement spacing and sample size especially over land covers with high absolute snow depth variability, such as barren lands in tundra. Applying similar sampling protocol (sample spacing and sample size) over boreal and tundra land cover types that represent very different snow characteristics will yield to non-equal representativeness of the areal mean values. The extensive datasets collected for this work demonstrate that observations measured at various scales can provide different view angle to the same challenge but at the same time any dataset individually cannot provide a full understanding of the target complexity. This work and the collected datasets directly facilitate further investigation of uncertainty in fractional snow cover maps retrieved by optical remote sensing and the interpretation of satellite observations in boreal and tundra landscapes.Lumen kaukokartoitus on menetelmä, jolla mitataan lumen ominaisuuksia ilmasta tai avaruudesta käsin ilman fyysistä kontaktia kohteeseen. Luotettavat arviot lumipeitteen laajuudesta ja lumen ominaisuuksista ovat elintärkeitä useille menetelmille mukaan lukien ilmastonmuutoksen tutkimus sekä hydrologinen ennustaminen ja sään ennustaminen. Optiset kaukokartoitusmenetelmät havaitsevat lumipeitteen laajuuden lumen korkean heijastavuuden perusteella. Lumen ominaisuuksien korkea ajallinen ja alueellinen vaihtelu sekä heterogeeniset maastotyypit ovat yleinen haaste lumipeitteen laajuuden kaukokartoitukselle. Satelliitin optisen sensorin jalanjälki voi ulottua muutamista kymmenistä metreistä kilometriin; sensorin mittaama signaali voi samanaikaisesti nousta useista eri kohteista saman satelliittipikselin sisällä. Käyttämällä metodeja, joissa pyritään ratkaisemaan erilaisten kohdetyyppien osuus mitatussa signaalissa tai käänteismallintamalla, lumen osuus satelliittipikselin sisällä voidaan ratkaista mitatusta elektromagneettisesta signaalista. Nämä menetelmät kuitenkin vaativat tietoa pikselissä olevien kohteiden – mallimuuttujien – spektraalisista ominaisuuksista. Tuotetun lumipeitekartan tarkkuus on suoraan riippuvainen näille muuttujille asetettujen arvojen käyttökelpoisuudesta. Toisaalta saman satelliittipikselin sisällä lumipeitteen ominaisuuksissa voi olla jyrkkiäkin muutoksia, jotka vaikeuttavat satelliittihavaintojen tulkintaa. Epäsuorilla menetelmillä havaittuja lumen estimaatteja voidaan varmentaa hyödyntämällä maanpinnalla kerättyjä maastohavaintoja, mutta myös nämä aineistot sisältävät epätarkkuutta ja virhettä. Tämä väitöskirja analysoi laboratoriossa useista boreaalisista lumityypeistä kerättyjä spektraalisia mittauksia, joiden tarkoitus on tarjota tarkempia lumen heijastusarvoja hyödynnettäväksi menetelmässä, jota käytetään lumipeitteen laajuuden kartoituksessa. Boreaalisella metsävyöhykkeellä olevia spektraalisia mallimuuttujia, joita tyypillisesti käytetään optisissa lumen kartoitusmenetelmissä, kuvataan väitöstyössä usean eri mittakaavan havainnoilla. Lisäksi mittavaa lumensyvyyden, lumen vesiarvon sekä lumen tiheyden maastomittausaineistoa hyödynnetään kaukokartoitushavaintojen tulkinnan tukemiseksi boreaalisella vyöhykkeellä sekä tundralla. Aineiston avulla kuvataan lumen ominaisuuksien alueellista ja ajallista vaihtelua sekä tutkitaan pistemäisesti kerättyjen maastohavaintojen epätarkkuutta sekä edustavuutta, kun niitä käytetään kaukokartoitushavaintojen validoinnissa. Väitöstyön yleisenä tarkoituksena on edistää tietoutta boreaalisen vyöhykkeen spektraalisista mallimuuttujista, jotta optisella kaukokartoituksella tuotettujen lumipeitehavaintojen tarkkuus paranee ja tukea kaukokartoitushavaintojen parempaa tulkintaa ja validointia epähomogeenisissa satelliittipikseleissä. Väitöstyön pääasiallinen viesti on, että laboratorio-olosuhteissa kerätyillä mittauksilla voidaan tuottaa tarkempia arvoja lumipeitteen kaukokartoitushavaintojen tulkinta-algoritmeille, koska maastomittauksissa läsnä olevia häiritseviä tekijöitä voidaan sulkea pois. Lumipeitteen kaukokartoituksessa hyödynnettävien sensorien hieman toisistaan poikkeavat optiset kaistat eivät näytä merkittävästi vaikuttavan lumen heijastusarvoon. Tämä tukee historiallisten aineistojen rakentamista eri sensoreilla kerätyistä havainnoista. Tulokset myös paljastavat, että lumen heijastusarvoissa on suurta hajontaa, joka liittyy lumen makro- ja mikrostruktruuristen ominaisuuksien vaihteluun. Lisäksi tulokset osoittivat, että maastomittauksista saadut alueelliset lumensyvyyden keskiarvot, joita usein käytetään karkeamman resoluution kaukokartoitushavaintojen validoinnissa, ovat riippuvaisia mittausten välisestä etäisyydestä sekä mittausten lukumäärästä. Näin on erityisesti maanpeiteluokissa, joilla lumensyvyyden vaihtelu on erityisen suurta, kuten paljakat tundralla. Soveltamalla samaa mittausprotokollaa boreaalisiin ja tundran maanpeiteluokkiin, jotka edustavat hyvin erilaisia lumiolosuhteita, saadaan keskenään eriävästi edustavia alueellisia keskiarvoja. Tässä työssä kerätyt laajamittaiset havaintoaineistot osoittavat, että eri mittakaavoilla kerätyt havainnot voivat tarjota eri näkökulman samaan ongelmaan, mutta samaan aikaan yksittäinen havaintoaineisto on riittämätön tarjotakseen täyden ymmärryksen tiettyyn haasteeseen, kuten epähomogeenisen satelliittipikselin tulkintaan. Tämä väitöstyö ja siinä kerätyt aineistot hyödyttävät suoraan tutkimusta, joka koskee lumipeitteen laajuuden optisen kaukokartoituksen epätarkkuuksia sekä satelliittihavaintojen tulkintaa boreaalisella metsävyöhykkeellä sekä tundralla

    Characterizing a Multi-Sensor System for Terrestrial Freshwater Remote Sensing via an Observing System Simulation Experiment (OSSE)

    Get PDF
    Terrestrial freshwater storage (TWS) is the vertically-integrated sum of snow, ice, soilmoisture, vegetation water content, surface water impoundments, and groundwater. Among these components, snow, soil moisture, and vegetation are the most dynamic (i.e., shortest residence time) as well as the most variable across space. However, accurately retrieving estimates of snow, soil moisture, or vegetation using space-borne sensors often requires simultaneous knowledge of one or more of the other components. In other words, reasonably characterizing terrestrial freshwater requires careful consideration of the coupled snow-soil moisture-vegetation response that is implicit in both TWS and the hydrologic cycle. One challenge is to optimally determine the multi-variate, multi-sensor remote sensing observations needed to best characterize the coupled snow-soil moisture-vegetation system. Different types of sensors each have their own unique strengths and limitations. Meanwhile, remote sensing data is inherently discontinuous across time and space, and that the revisit cycle of remote sensing observations will dictate much of the efficacy in capturing the dynamics of the coupled snow-soil moisture-vegetation response. This study investigates different snow sensors and simulates the sensor coverage as a function of different orbital configurations and sensor properties in order to quantify the discontinuous nature of remotely-sensed observations across space and time. The information gleaned from this analysis, coupled with a time-varying snow binary map, is used to evaluate the efficacy of a single sensor (or constellation of sensors) to estimate terrestrial snow on a global scale. A suite of different combinations, and permutations, of different sensors, including different orbital characteristics, is explored with respect to 1-day, 3-day, and 30-day repeat intervals. The results show what can, and what cannot, be observed by different sensors. The results suggest that no single sensor can accurately measure all types of snow, but that a constellation composed of different types of sensors could better compensate for the limitations of a single type of sensor. Even though only snow is studied here, a similar procedure could be conducted for soil moisture or vegetation. To better investigate the coupled snow-soil moisture-vegetation system, an observing system simulation experiment (OSSE) is designed in order to explore the value of coordinated observations of these three separate, yet mutually dependent, state variables. In the experiment, a “synthetic truth” of snow water equivalent, surface soil moisture, and/or vegetation biomass is generated using the NoahMP-4.0.1 land surface model within the NASA Land Information System (LIS). Afterwards, a series of hypothetical sensors with different orbital configurations is prescribed in order to retrieve snow, soil moisture, and vegetation. The ground track and footprint of each sensor is approximated using the Trade-space Analysis Tool for Constellations (TAT-C) simulator. A space-time subsampler predicated on the output from TAT-C is then applied to the synthetic truth. Furthermore, a hypothesized amount of observation error is injected into the synthetic truth in order to yield a realistic synthetic retrieval for each of the hypothetical sensor configurations considered as part of this dissertation. The synthetic retrievals are then assimilated into the NoahMP-4.0.1 land surface model using different boundary conditions from those used to generate the synthetic truth such that the differences between the two sets of boundary conditions serve as a realistic proxy for real-world boundary condition errors. A baseline Open Loop simulation where no retrievals are assimilated is conducted in order to evaluate the added utility associated with assimilation of one (or more) of the synthetic retrievals. The impact of the assimilation of a given suite of one or more retrievals on land surface model estimates of snow, soil moisture, vegetation, and runoff serve as a numeric laboratory in order to assess which sensor(s), either separate or in a coordinated fashion, yield the most utility in terms of improved model performance. The results from this OSSE show that the assimilation of a single type of retrieval (i.e., snow or soil moisture or vegetation) may only improve the estimation of a small part of the snow-soil moisture-vegetation system, but may also degrade of other parts of that same system. Alternatively, the assimilation of more than one type of retrieval may yield greater benefits to all the components of the snow-soil moisture-vegetation system, because it yields a more complete, holistic view of the coupled system. This OSSE framework could potentially serve as an aid to mission planners in determining how to get the most observational “bang for the buck” based on the myriad of different sensor types, orbital configurations, and error characteristics available in the selection of a future terrestrial freshwater mission

    Developing Parameter Constraints for Radar-based SWE Retrievals

    Get PDF
    Terrestrial snow is an important freshwater reservoir with significant influence on the climate and energy balance. It exhibits natural spatiotemporal variability which has been enhanced by climate change, thus it is important to monitor on a large scale. Active microwave, or radar remote sensing has shown frequency-dependent promise in this regard, however, interpretation remains a challenge. The aim of this thesis was to develop constraints for radar based SWE retrievals which characterize and limit uncertainty with a focus on the underlying physical processes, snowpack stratigraphy, the influence of vegetation, and effects of background scattering. The University of Waterloo Scatterometer (UWScat) was used to make measurements at 9.6 and 17.2 GHz of snow and bare ground in a series of field-based campaigns in Maryhill and Englehart, ON, Grand Mesa, CO (NASA SnowEx campaign, year 1), and Trail Valley Creek, NT. Additional measurements from Tobermory, ON, and Churchill, MB (Canadian Snow and Ice Experiment) were included. The Microwave Emission Model for Layered Snowpacks, Version 3, adapted for backscattering (MEMLS3&a) was used to explore snowpack parameterization and SWE retrieval and the Freeman-Durden three component decomposition (FD3c) was used to leverage the polarimetric response. Physical processes in the snow accumulation environment demonstrated influence on regional snowpack parameterization and constraints in a SWE retrieval context with a single-layer snowpack parameterization for Maryhill, ON and a two-layer snowpack parameterization for Englehart, ON resulting in a retrieval RMSE of 21.9 mm SWE and 24.6 mm SWE, respectively. Use of in situ snow depths improved RMSE to 12.0 mm SWE and 10.9 mm SWE, while accounting for soil scattering effects further improved RMSE by up to 6.3 mm SWE. At sites with vegetation and ice lenses, RMSE improved from 60.4 mm SWE to 21.1 mm SWE when in situ snow depths were used. These results compare favorably with the common accuracy requirement of RMSE ≤ 30 mm and underscore the importance of understanding the driving physical processes in a snow accumulation environment and the utility of their regional manifestation in a SWE retrieval context. A relationship between wind slab thickness and the double-bounce component of the FD3c in a tundra snowpack was introduced for incidence angles ≥ 46° and wind slab thickness ≥ 19 cm. Estimates of wind slab thickness and SWE resulted in an RMSE of 6.0 cm and 5.5 mm, respectively. The increased double-bounce scattering was associated with path length increase within a growing wind slab layer. Signal attenuation in a sub-canopy SWE retrieval was also explored. The volume scattering component of the FD3c yielded similar performance to forest fraction in the retrieval with several distinct advantages including a real-time description of forest condition, accounting for canopy geometry without ancillary information, and providing coincident information on forest canopy in remote locations. Overall, this work demonstrated how physical processes can manifest regional outcomes, it quantified effects of natural inclusions and background scattering on SWE retrievals, it provided a means to constrain wind slab thickness in a tundra environment, and it improved characterization of coniferous forest in a sub-canopy SWE retrieval context. Future work should focus on identifying ice and vegetation conditions prior to SWE retrieval, testing the spatiotemporal validity of the methods developed herein, and finally, improving the integration of snowpack attenuation within retrieval efforts

    Remote Sensing of Environmental Changes in Cold Regions

    Get PDF
    This Special Issue gathers papers reporting recent advances in the remote sensing of cold regions. It includes contributions presenting improvements in modeling microwave emissions from snow, assessment of satellite-based sea ice concentration products, satellite monitoring of ice jam and glacier lake outburst floods, satellite mapping of snow depth and soil freeze/thaw states, near-nadir interferometric imaging of surface water bodies, and remote sensing-based assessment of high arctic lake environment and vegetation recovery from wildfire disturbances in Alaska. A comprehensive review is presented to summarize the achievements, challenges, and opportunities of cold land remote sensing

    Snow Properties Retrieval Using Passive Microwave Observations

    Get PDF
    Seasonal snow cover, the second-largest component of the cryosphere, is crucial in controlling the climate system, through its important role in modifying Earth’s albedo. The temporal variability of snow extent and its physical properties in the seasonal cycle also make up a significant element to the cryospheric energy balance. Thus, seasonal snowcover should be monitored not only for its climatological impacts but also for its rolein the surface-water supply, ground-water recharge, and its insolation properties at local scales. Snowpack physical properties strongly influence the emissions from the substratum, making feasible snow property retrieval by means of the surface brightness temperature observed by passive microwave sensors. Depending on the observing spatial resolution, the time series records of daily snow coverage and a snowpacks most-critical properties such as the snow depth and snow water equivalent (SWE) could be helpful in applications ranging from modeling snow variations in a small catchment to global climatologic studies. However, the challenge of including spaceborne snow water equivalent (SWE) products in operational hydrological and hydroclimate modeling applications is very demanding with limited uptake by these systems. Various causes have been attributed to this lack of up-take but most stem from insufficient SWE accuracy. The root causes of this challenge includes the coarse spatial resolution of passive microwave (PM) observations that observe highly aggregated snowpack properties at the spaceborne scale, and inadequacies during the retrieval process that are caused by uncertainties with the forward emission modeling of snow and challenges to find robust parameterizations of the models. While the spatial resolution problem is largely in the realm of engineering design and constrained by physical restrictions, a better understanding of the whole range of retrieval methodologies can provide the clarity needed to move the thinking forward in this important field. Following a review on snow depth and SWE retrieval methods using passive microwave remote sensing observations, this research employs a forward emission model to simulate snowpacks emission and compare the results to the PM airborne observations. Airborne radiometer observations coordinated with ground-based in-situ snow measurements were acquired in the Canadian high Arctic near Eureka, NT, in April 2011. The observed brightness temperatures (Tb) at 37 GHz from typical moderate density dry snow in mid-latitudes decreases with increasing snow water equivalent (SWE) due to the volume scattering of the ground emissions by the overlying snow. At a certain point, however, as SWE increases, the emission from the snowpack offsets the scattering of the sub-nivean emission. In tundra snow, the Tb slope reversal occurs at shallower snow thicknesses. While it has been postulated that the inflection point in the seasonal time series of observed Tb V 37 GHz of tundra snow is controlled by the formation of a thick wind slab layer, the simulation of this effect has yet to be confirmed. Therefore, the Dense Media Radiative Transfer Theory forMulti Layered (DMRT-ML) snowpack is used to predict the passive microwave response from airborne observations over shallow, dense, slab-layered tundra snow. The DMRT-ML was parameterized with the in-situ snow measurements using a two-layer snowpack and run in two configurations: a depth hoar and a wind slab dominated pack. Snow depth retrieval from passive microwave observations without a-priori information is a highly underdetermined system. An accurate estimate of snow depth necessitates a-priori information of snowpack properties, such as grain size, density, physical temperature and stratigraphy, and, very importantly, a minimization of this a prior information requirement. In previous studies, a Bayesian Algorithm for Snow Water Equivalent (SWE) Estimation (BASE) have been developed, which uses the Monte Carlo Markov Chain (MCMC) method to estimate SWE for taiga and alpine snow from 4-frequency ground-based radiometer Tb. In our study, BASE is used in tundra snow for datasets of 464 footprints inthe Eureka region coupled with airborne passive microwave observations—the same fieldstudy that forward modelling was evaluated. The algorithm searches optimum posterior probability distribution of snow properties using a cost function between physically based emission simulations and Tb observations. A two-layer snowpack based on local snow cover knowledge is assumed to simulate emission using the Dense Media Radiative Transfer-Multi Layered (DMRT-ML) model. Overall, the results of this thesis reinforce the applicability of a physics-based emission model in SWE retrievals. This research highlights the necessity to consider the two-part emission characteristics of a slab-dominated tundra snowpack and suggests performing inversion in a Bayesian framework
    corecore