1,627 research outputs found

    ConSUS: A light-weight program conditioner

    Get PDF
    Program conditioning consists of identifying and removing a set of statements which cannot be executed when a condition of interest holds at some point in a program. It has been applied to problems in maintenance, testing, re-use and re-engineering. All current approaches to program conditioning rely upon both symbolic execution and reasoning about symbolic predicates. The reasoning can be performed by a ‘heavy duty’ theorem prover but this may impose unrealistic performance constraints. This paper reports on a lightweight approach to theorem proving using the FermaT Simplify decision procedure. This is used as a component to ConSUS, a program conditioning system for the Wide Spectrum Language WSL. The paper describes the symbolic execution algorithm used by ConSUS, which prunes as it conditions. The paper also provides empirical evidence that conditioning produces a significant reduction in program size and, although exponential in the worst case, the conditioning system has low degree polynomial behaviour in many cases, thereby making it scalable to unit level applications of program conditioning

    Structural testing techniques for the selective revalidation of software

    Get PDF
    The research in this thesis addresses the subject of regression testing. Emphasis is placed on developing a technique for selective revalidation which can be used during software maintenance to analyse and retest only those parts of the program affected by changes. In response to proposed program modifications, the technique assists the maintenance programmer in assessing the extent of the program alterations, in selecting a representative set of test cases to rerun, and in identifying any test cases in the test suite which are no longer required because of the program changes. The proposed technique involves the application of code analysis techniques and operations research. Code analysis techniques are described which derive information about the structure of a program and are used to determine the impact of any modifications on the existing program code. Methods adopted from operations research are then used to select an optimal set of regression tests and to identify any redundant test cases. These methods enable software, which has been validated using a variety of structural testing techniques, to be retested. The development of a prototype tool suite, which can be used to realise the technique for selective revalidation, is described. In particular, the interface between the prototype and existing regression testing tools is discussed. Moreover, the effectiveness of the technique is demonstrated by means of a case study and the results are compared with traditional regression testing strategies and other selective revalidation techniques described in this thesis

    The 4th Conference of PhD Students in Computer Science

    Get PDF

    High-fidelity Multidisciplinary Sensitivity Analysis and Design Optimization for Rotorcraft Applications

    Get PDF
    A multidisciplinary sensitivity analysis of rotorcraft simulations involving tightly coupled high-fidelity computational fluid dynamics and comprehensive analysis solvers is presented and evaluated. A sensitivity-enabled fluid dynamics solver and a nonlinear flexible multibody dynamics solver are coupled to predict aerodynamic loads and structural responses of helicopter rotor blades. A discretely consistent adjoint-based sensitivity analysis available in the fluid dynamics solver provides sensitivities arising from unsteady turbulent flows and unstructured dynamic overset meshes, while a complex-variable approach is used to compute structural sensitivities with respect to aerodynamic loads. The multidisciplinary sensitivity analysis is conducted through integrating the sensitivity components from each discipline of the coupled system. Accuracy of the coupled system is validated by conducting simulations for a benchmark rotorcraft model and comparing solutions with established analyses and experimental data. Sensitivities of lift computed by the multidisciplinary sensitivity analysis are verified by comparison with the sensitivities obtained by complex-variable simulations. Finally the multidisciplinary sensitivity analysis is applied to a constrained gradient-based design optimization for a HART-II rotorcraft configuration
    • …
    corecore