193 research outputs found

    Contributions for microgrids dynamic modelling and operation

    Get PDF
    Tese de doutoramento. Engenharia Electrotécnica e de Computadores. Faculdade de Engenharia. Universidade do Porto. 200

    Multi-agent control and operation of electric power distribution systems

    Get PDF
    This dissertation presents operation and control strategies for electric power distribution systems containing distributed generators. First, models of microturbines and fuel cells are developed. These dynamic models are incorporated in a power system analysis package. Second, operation of these generators in a distribution system is addressed and load following schemes are designed. The penetration of distributed generators (DGs) into the power distribution system stability becomes an issue and so the control of those DGs becomes necessary. A decentralized control structure based on conventional controllers is designed for distributed generators using a new developed optimization technique called Guided Particle Swarm Optimization. However, the limitations of the conventional controllers do not satisfy the stability requirement of a power distribution system that has a high DG penetration level, which imposes the necessity of developing a new control structure able to overcome the limitations imposed by the fixed structure conventional controllers and limit the penetration of DGs in the overall transient stability of the distribution system. Third, a novel multi-agent based control architecture is proposed for transient stability enhancement for distribution systems with microturbines. The proposed control architecture is hierarchical with one supervisory global control agent and a distributed number of local control agents in the lower layer. Specifically, a central control center supervises and optimizes the overall process, while each microturbine is equipped with its own local control agent.;The control of naval shipboard electric power system is another application of distributed control with multi-agent based structure. In this proposal, the focus is to introduce the concept of multi-agent based control architecture to improve the stability of the shipboard power system during faulty conditions. The effectiveness of the proposed methods is illustrated using a 37-bus IEEE benchmark system and an all-electric naval ship

    Implementation of Adaptive Critic-Based Neurocontrollers for Turbogenerators in a Multimachine Power System

    Get PDF
    This paper presents the design and practical hardware implementation of optimal neurocontrollers that replace the conventional automatic voltage regulator (AVR) and the turbine governor of turbogenerators on multimachine power systems. The neurocontroller design uses a powerful technique of the adaptive critic design (ACD) family called dual heuristic programming (DHP). The DHP neurocontroller\u27s training and testing are implemented on the Innovative Integration M67 card consisting of the TMS320C6701 processor. The measured results show that the DHP neurocontrollers are robust and their performance does not degrade unlike the conventional controllers even when a power system stabilizer (PSS) is included, for changes in system operating conditions and configurations. This paper also shows that it is possible to design and implement optimal neurocontrollers for multiple turbogenerators in real time, without having to do continually online training of the neural networks, thus avoiding risks of instability

    Identification of microturbine model for long-term dynamic analysis of distribution networks

    Get PDF
    As one of the most successfully commercialized distributed energy resources, the long-term effects of microturbines (MTs) on the distribution network has not been fully investigated due to the complex thermo-fluid-mechanical energy conversion processes. This is further complicated by the fact that the parameter and internal data of MTs are not always available to the electric utility, due to different ownerships and confidentiality concerns. To address this issue, a general modeling approach for MTs is proposed in this paper, which allows for the long-term simulation of the distribution network with multiple MTs. First, the feasibility of deriving a simplified MT model for long-term dynamic analysis of the distribution network is discussed, based on the physical understanding of dynamic processes that occurred within MTs. Then a three-stage identification method is developed in order to obtain a piecewise MT model and predict electro-mechanical system behaviors with saturation. Next, assisted with the electric power flow calculation tool, a fast simulation methodology is proposed to evaluate the long-term impact of multiple MTs on the distribution network. Finally, the model is verified by using Capstone C30 microturbine experiments, and further applied to the dynamic simulation of a modified IEEE 37-node test feeder with promising results

    Identification and development of microgrids emergency control procedures

    Get PDF
    Tese de doutoramento. Engenharia Electrotécnica e de Computadores. Faculdade de Engenharia. Universidade do Porto. 200

    Data-Driven Dynamic Modeling of Coupled Thermal and Electric Outputs of Microturbines

    Get PDF
    Microturbines (MTs) are among the most successfully commercialized distributed energy resources, especially when they are used for combined heat and power generation. However, the interrelated thermal and electrical system dynamic behaviors have not been fully investigated. This is technically challenging due to the complex thermo-fluid-mechanical energy conversion processes, which introduce multiple time-scale dynamics and strong nonlinearity into the analysis. To tackle this problem, this paper proposes a simplified model which can predict the coupled thermal and electric output dynamics of MTs. Considering the time-scale difference of various dynamic processes occurring within MTs, the electromechanical subsystem is treated as a fast quasi-linear process, while the thermo-mechanical subsystem is treated as a slow process with high nonlinearity. A three-stage subspace identification method is utilized to capture the dominant dynamics and predict the electric power output. For the thermo-mechanical process, a radial basis function model trained by the particle swarm optimization method is employed to handle the strong nonlinear characteristics. Experimental tests on a Capstone C30 MT show that the proposed modeling method can well capture the system dynamics, and produce a good prediction of the coupled thermal and electric outputs in various operating modes

    Automated Data Filtering Approach for ANN Modeling of Distributed Energy Systems: Exploring the Application of Machine Learning

    Get PDF
    To realize the distributed generation and to make the partnership between the dispatchable units and variable renewable resources work efficiently, accurate and flexible monitoring needs to be implemented. Due to digital transformation in the energy industry, a large amount of data is and will be captured every day, but the inability to process them in real time challenges the conventional monitoring and maintenance practices. Access to automated and reliable data-filtering tools seems to be crucial for the monitoring of many distributed generation units, avoiding false warnings and improving the reliability. This study aims to evaluate a machine-learning-based methodology for autodetecting outliers from real data, exploring an interdisciplinary solution to replace the conventional manual approach that was very time-consuming and error-prone. The raw data used in this study was collected from experiments on a 100-kW micro gas turbine test rig in Norway. The proposed method uses Density-Based Spatial Clustering of Applications with Noise (DBSCAN) to detect and filter out the outliers. The filtered datasets are used to develop artificial neural networks (ANNs) as a baseline to predict the normal performance of the system for monitoring applications. Results show that the filtering method presented is reliable and fast, minimizing time and resources for data processing. It was also shown that the proposed method has the potential to enhance the performance of the predictive models and ANN-based monitoring.publishedVersio

    Multiple energy carrier optimisation with intelligent agents

    Get PDF
    Multiple energy carrier systems stem from the need to evolve traditional electricity, gas and other energy systems to more efficient, integrated energy systems. An approach is presented, for controlling multiple energy carriers, including electricity (AC or DC), heat, natural gas and hydrogen, with the objective to minimise the overall cost and/or emissions, while adhering to technical and commercial constraints, such as network limits and market contracts. The technique of multi-agent systems (MAS) was used. The benefits of this approach are discussed and include a reduction of more than 50% in the balancing costs of a potential deviation. An implementation of this methodology is also presented. In order to validate the operation of the developed system, a number of experiments were performed using both software and hardware. The results validated the efficient operation of the developed system, proving its ability to optimise the operation of multiple energy carrier inputs within the context of an energy hub, using a hierarchical multi-agent system control structure

    Neural Network Predictive Controller for Improved Operational Efficiency of Shiroro Hydropower Plant

    Get PDF
    The development of e fficient models and controllers is central to better understanding and analysis of operational efficiency of modern hydropower plants. In this work, an intelligent Levenberg - Marquardt b ased Neural Network Predictive C ontroller (NNPC) was developed for Shiroro hydroelectric power station us ing actual data obtained from the plant operation . Results obtained after training and simulation of the system show that neural network technique serves as an efficient approach of designing hydroelectric power station models and controllers

    Progettazione multidisciplinare ottimizzata nelle microturbine a gas

    Get PDF
    Optimized multidisciplinary design in micro-gasturbine
    • …
    corecore