3,853 research outputs found

    Auto-DeepLab: Hierarchical Neural Architecture Search for Semantic Image Segmentation

    Full text link
    Recently, Neural Architecture Search (NAS) has successfully identified neural network architectures that exceed human designed ones on large-scale image classification. In this paper, we study NAS for semantic image segmentation. Existing works often focus on searching the repeatable cell structure, while hand-designing the outer network structure that controls the spatial resolution changes. This choice simplifies the search space, but becomes increasingly problematic for dense image prediction which exhibits a lot more network level architectural variations. Therefore, we propose to search the network level structure in addition to the cell level structure, which forms a hierarchical architecture search space. We present a network level search space that includes many popular designs, and develop a formulation that allows efficient gradient-based architecture search (3 P100 GPU days on Cityscapes images). We demonstrate the effectiveness of the proposed method on the challenging Cityscapes, PASCAL VOC 2012, and ADE20K datasets. Auto-DeepLab, our architecture searched specifically for semantic image segmentation, attains state-of-the-art performance without any ImageNet pretraining.Comment: To appear in CVPR 2019 as oral. Code for Auto-DeepLab released at https://github.com/tensorflow/models/tree/master/research/deepla

    Real-time Ultrasound-enhanced Multimodal Imaging of Tongue using 3D Printable Stabilizer System: A Deep Learning Approach

    Full text link
    Despite renewed awareness of the importance of articulation, it remains a challenge for instructors to handle the pronunciation needs of language learners. There are relatively scarce pedagogical tools for pronunciation teaching and learning. Unlike inefficient, traditional pronunciation instructions like listening and repeating, electronic visual feedback (EVF) systems such as ultrasound technology have been employed in new approaches. Recently, an ultrasound-enhanced multimodal method has been developed for visualizing tongue movements of a language learner overlaid on the face-side of the speaker's head. That system was evaluated for several language courses via a blended learning paradigm at the university level. The result was asserted that visualizing the articulator's system as biofeedback to language learners will significantly improve articulation learning efficiency. In spite of the successful usage of multimodal techniques for pronunciation training, it still requires manual works and human manipulation. In this article, we aim to contribute to this growing body of research by addressing difficulties of the previous approaches by proposing a new comprehensive, automatic, real-time multimodal pronunciation training system, benefits from powerful artificial intelligence techniques. The main objective of this research was to combine the advantages of ultrasound technology, three-dimensional printing, and deep learning algorithms to enhance the performance of previous systems. Our preliminary pedagogical evaluation of the proposed system revealed a significant improvement in flexibility, control, robustness, and autonomy.Comment: 12 figures, 1 tabl

    MultiNet++: Multi-Stream Feature Aggregation and Geometric Loss Strategy for Multi-Task Learning

    Full text link
    Multi-task learning is commonly used in autonomous driving for solving various visual perception tasks. It offers significant benefits in terms of both performance and computational complexity. Current work on multi-task learning networks focus on processing a single input image and there is no known implementation of multi-task learning handling a sequence of images. In this work, we propose a multi-stream multi-task network to take advantage of using feature representations from preceding frames in a video sequence for joint learning of segmentation, depth, and motion. The weights of the current and previous encoder are shared so that features computed in the previous frame can be leveraged without additional computation. In addition, we propose to use the geometric mean of task losses as a better alternative to the weighted average of task losses. The proposed loss function facilitates better handling of the difference in convergence rates of different tasks. Experimental results on KITTI, Cityscapes and SYNTHIA datasets demonstrate that the proposed strategies outperform various existing multi-task learning solutions.Comment: Accepted for CVPR 2019 Workshop on Autonomous Driving (WAD). Demo Video can be accessed at https://youtu.be/E378PzLq7l

    Online Normalization for Training Neural Networks

    Full text link
    Online Normalization is a new technique for normalizing the hidden activations of a neural network. Like Batch Normalization, it normalizes the sample dimension. While Online Normalization does not use batches, it is as accurate as Batch Normalization. We resolve a theoretical limitation of Batch Normalization by introducing an unbiased technique for computing the gradient of normalized activations. Online Normalization works with automatic differentiation by adding statistical normalization as a primitive. This technique can be used in cases not covered by some other normalizers, such as recurrent networks, fully connected networks, and networks with activation memory requirements prohibitive for batching. We show its applications to image classification, image segmentation, and language modeling. We present formal proofs and experimental results on ImageNet, CIFAR, and PTB datasets.Comment: Published at the Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada. Code: https://github.com/Cerebras/online-normalizatio

    Identity-Preserving Realistic Talking Face Generation

    Full text link
    Speech-driven facial animation is useful for a variety of applications such as telepresence, chatbots, etc. The necessary attributes of having a realistic face animation are 1) audio-visual synchronization (2) identity preservation of the target individual (3) plausible mouth movements (4) presence of natural eye blinks. The existing methods mostly address the audio-visual lip synchronization, and few recent works have addressed the synthesis of natural eye blinks for overall video realism. In this paper, we propose a method for identity-preserving realistic facial animation from speech. We first generate person-independent facial landmarks from audio using DeepSpeech features for invariance to different voices, accents, etc. To add realism, we impose eye blinks on facial landmarks using unsupervised learning and retargets the person-independent landmarks to person-specific landmarks to preserve the identity-related facial structure which helps in the generation of plausible mouth shapes of the target identity. Finally, we use LSGAN to generate the facial texture from person-specific facial landmarks, using an attention mechanism that helps to preserve identity-related texture. An extensive comparison of our proposed method with the current state-of-the-art methods demonstrates a significant improvement in terms of lip synchronization accuracy, image reconstruction quality, sharpness, and identity-preservation. A user study also reveals improved realism of our animation results over the state-of-the-art methods. To the best of our knowledge, this is the first work in speech-driven 2D facial animation that simultaneously addresses all the above-mentioned attributes of a realistic speech-driven face animation.Comment: Accepted in IJCNN 202

    Left Ventricle Segmentation and Quantification from Cardiac Cine MR Images via Multi-task Learning

    Full text link
    Segmentation of the left ventricle and quantification of various cardiac contractile functions is crucial for the timely diagnosis and treatment of cardiovascular diseases. Traditionally, the two tasks have been tackled independently. Here we propose a convolutional neural network based multi-task learning approach to perform both tasks simultaneously, such that, the network learns better representation of the data with improved generalization performance. Probabilistic formulation of the problem enables learning the task uncertainties during the training, which are used to automatically compute the weights for the tasks. We performed a five fold cross-validation of the myocardium segmentation obtained from the proposed multi-task network on 97 patient 4-dimensional cardiac cine-MRI datasets available through the STACOM LV segmentation challenge against the provided gold-standard myocardium segmentation, obtaining a Dice overlap of 0.849±0.0360.849 \pm 0.036 and mean surface distance of 0.274±0.0830.274 \pm 0.083 mm, while simultaneously estimating the myocardial area with mean absolute difference error of 205±198205\pm198 mm2^2.Comment: STACOM 2018 Workshop, MICCAI 201

    Topic Identification for Speech without ASR

    Full text link
    Modern topic identification (topic ID) systems for speech use automatic speech recognition (ASR) to produce speech transcripts, and perform supervised classification on such ASR outputs. However, under resource-limited conditions, the manually transcribed speech required to develop standard ASR systems can be severely limited or unavailable. In this paper, we investigate alternative unsupervised solutions to obtaining tokenizations of speech in terms of a vocabulary of automatically discovered word-like or phoneme-like units, without depending on the supervised training of ASR systems. Moreover, using automatic phoneme-like tokenizations, we demonstrate that a convolutional neural network based framework for learning spoken document representations provides competitive performance compared to a standard bag-of-words representation, as evidenced by comprehensive topic ID evaluations on both single-label and multi-label classification tasks.Comment: 5 pages, 2 figures; accepted for publication at Interspeech 201

    The application of deep convolutional neural networks to ultrasound for modelling of dynamic states within human skeletal muscle

    Full text link
    This paper concerns the fully automatic direct in vivo measurement of active and passive dynamic skeletal muscle states using ultrasound imaging. Despite the long standing medical need (myopathies, neuropathies, pain, injury, ageing), currently technology (electromyography, dynamometry, shear wave imaging) provides no general, non-invasive method for online estimation of skeletal intramuscular states. Ultrasound provides a technology in which static and dynamic muscle states can be observed non-invasively, yet current computational image understanding approaches are inadequate. We propose a new approach in which deep learning methods are used for understanding the content of ultrasound images of muscle in terms of its measured state. Ultrasound data synchronized with electromyography of the calf muscles, with measures of joint torque/angle were recorded from 19 healthy participants (6 female, ages: 30 +- 7.7). A segmentation algorithm previously developed by our group was applied to extract a region of interest of the medial gastrocnemius. Then a deep convolutional neural network was trained to predict the measured states (joint angle/torque, electromyography) directly from the segmented images. Results revealed for the first time that active and passive muscle states can be measured directly from standard b-mode ultrasound images, accurately predicting for a held out test participant changes in the joint angle, electromyography, and torque with as little error as 0.022{\deg}, 0.0001V, 0.256Nm (root mean square error) respectively.Comment: paper in preparation for submission to IEEE TM

    Point Cloud Oversegmentation with Graph-Structured Deep Metric Learning

    Full text link
    We propose a new supervized learning framework for oversegmenting 3D point clouds into superpoints. We cast this problem as learning deep embeddings of the local geometry and radiometry of 3D points, such that the border of objects presents high contrasts. The embeddings are computed using a lightweight neural network operating on the points' local neighborhood. Finally, we formulate point cloud oversegmentation as a graph partition problem with respect to the learned embeddings. This new approach allows us to set a new state-of-the-art in point cloud oversegmentation by a significant margin, on a dense indoor dataset (S3DIS) and a sparse outdoor one (vKITTI). Our best solution requires over five times fewer superpoints to reach similar performance than previously published methods on S3DIS. Furthermore, we show that our framework can be used to improve superpoint-based semantic segmentation algorithms, setting a new state-of-the-art for this task as well.Comment: CVPR201

    A Gentle Introduction to Deep Learning in Medical Image Processing

    Full text link
    This paper tries to give a gentle introduction to deep learning in medical image processing, proceeding from theoretical foundations to applications. We first discuss general reasons for the popularity of deep learning, including several major breakthroughs in computer science. Next, we start reviewing the fundamental basics of the perceptron and neural networks, along with some fundamental theory that is often omitted. Doing so allows us to understand the reasons for the rise of deep learning in many application domains. Obviously medical image processing is one of these areas which has been largely affected by this rapid progress, in particular in image detection and recognition, image segmentation, image registration, and computer-aided diagnosis. There are also recent trends in physical simulation, modelling, and reconstruction that have led to astonishing results. Yet, some of these approaches neglect prior knowledge and hence bear the risk of producing implausible results. These apparent weaknesses highlight current limitations of deep learning. However, we also briefly discuss promising approaches that might be able to resolve these problems in the future.Comment: Accepted by Journal of Medical Physics; Final Version after revie
    • …
    corecore