678 research outputs found

    Enabling technologies for MRI guided interventional procedures

    Get PDF
    This dissertation addresses topics related to developing interventional assistant devices for Magnetic Resonance Imaging (MRI). MRI can provide high-quality 3D visualization of target anatomy and surrounding tissue, but the benefits can not be readily harnessed for interventional procedures due to difficulties associated with the use of high-field (1.5T or greater) MRI. Discussed are potential solutions to the inability to use conventional mecha- tronics and the confined physical space in the scanner bore. This work describes the development of two apparently dissimilar systems that repre- sent different approaches to the same surgical problem - coupling information and action to perform percutaneous (through the skin) needle placement with MR imaging. The first system addressed takes MR images and projects them along with a surgical plan directly on the interventional site, thus providing in-situ imaging. With anatomical images and a corresponding plan visible in the appropriate pose, the clinician can use this information to perform the surgical action. My primary research effort has focused on a robotic assistant system that overcomes the difficulties inherent to MR-guided procedures, and promises safe and reliable intra-prostatic needle placement inside closed high-field MRI scanners. The robot is a servo pneumatically operated automatic needle guide, and effectively guides needles under real- time MR imaging. This thesis describes development of the robotic system including requirements, workspace analysis, mechanism design and optimization, and evaluation of MR compatibility. Further, a generally applicable MR-compatible robot controller is de- veloped, the pneumatic control system is implemented and evaluated, and the system is deployed in pre-clinical trials. The dissertation concludes with future work and lessons learned from this endeavor

    Neurological Disease Diagnosis and Treatment via Precise Robotic Intervention

    Get PDF
    This work focuses on the development and application of mechatronic systems for measurement, diagnosis and treatment of acute and chronic neurological conditions. The development of an automated tendon reflex stimulation device, as well as analysis and classification methods for both automated and manual stimulus delivery will provide the groundwork for improvements to both diagnosis and treatment of neurological injuries. In a similar vein, development of a variable resonance actuator for Magnetic Resonance Elastography imaging enables tissue property measurement of the intervertebral discs, hopefully providing an early marker and better understanding of degeneration. In addition to MRI based spinal tissue property measurements, an MRI guided high precision robot is developed for direct injection into the spinal cord, along with an accompanying image guided control scheme. The novel parallel plane mechanism enables control of 4 degrees of freedom, while the linear piezoelectric actuators in a direct drive configuration enables superior accuracy. Taken together, these robotic device developments constitute contributions to the field of precision medical robotics with applications to physiological understanding of the human body.Ph.D

    New Mechatronic Systems for the Diagnosis and Treatment of Cancer

    Get PDF
    Both two dimensional (2D) and three dimensional (3D) imaging modalities are useful tools for viewing the internal anatomy. Three dimensional imaging techniques are required for accurate targeting of needles. This improves the efficiency and control over the intervention as the high temporal resolution of medical images can be used to validate the location of needle and target in real time. Relying on imaging alone, however, means the intervention is still operator dependent because of the difficulty of controlling the location of the needle within the image. The objective of this thesis is to improve the accuracy and repeatability of needle-based interventions over conventional techniques: both manual and automated techniques. This includes increasing the accuracy and repeatability of these procedures in order to minimize the invasiveness of the procedure. In this thesis, I propose that by combining the remote center of motion concept using spherical linkage components into a passive or semi-automated device, the physician will have a useful tracking and guidance system at their disposal in a package, which is less threatening than a robot to both the patient and physician. This design concept offers both the manipulative transparency of a freehand system, and tremor reduction through scaling currently offered in automated systems. In addressing each objective of this thesis, a number of novel mechanical designs incorporating an remote center of motion architecture with varying degrees of freedom have been presented. Each of these designs can be deployed in a variety of imaging modalities and clinical applications, ranging from preclinical to human interventions, with an accuracy of control in the millimeter to sub-millimeter range

    Augmented reality for computer assisted orthopaedic surgery

    Get PDF
    In recent years, computer-assistance and robotics have established their presence in operating theatres and found success in orthopaedic procedures. Benefits of computer assisted orthopaedic surgery (CAOS) have been thoroughly explored in research, finding improvements in clinical outcomes, through increased control and precision over surgical actions. However, human-computer interaction in CAOS remains an evolving field, through emerging display technologies including augmented reality (AR) – a fused view of the real environment with virtual, computer-generated holograms. Interactions between clinicians and patient-specific data generated during CAOS are limited to basic 2D interactions on touchscreen monitors, potentially creating clutter and cognitive challenges in surgery. Work described in this thesis sought to explore the benefits of AR in CAOS through: an integration between commercially available AR and CAOS systems, creating a novel AR-centric surgical workflow to support various tasks of computer-assisted knee arthroplasty, and three pre–clinical studies exploring the impact of the new AR workflow on both existing and newly proposed quantitative and qualitative performance metrics. Early research focused on cloning the (2D) user-interface of an existing CAOS system onto a virtual AR screen and investigating any resulting impacts on usability and performance. An infrared-based registration system is also presented, describing a protocol for calibrating commercial AR headsets with optical trackers, calculating a spatial transformation between surgical and holographic coordinate frames. The main contribution of this thesis is a novel AR workflow designed to support computer-assisted patellofemoral arthroplasty. The reported workflow provided 3D in-situ holographic guidance for CAOS tasks including patient registration, pre-operative planning, and assisted-cutting. Pre-clinical experimental validation on a commercial system (NAVIO¼, Smith & Nephew) for these contributions demonstrates encouraging early-stage results showing successful deployment of AR to CAOS systems, and promising indications that AR can enhance the clinician’s interactions in the future. The thesis concludes with a summary of achievements, corresponding limitations and future research opportunities.Open Acces

    Dry Needling of Myofascial Trigger Points: Quantification of the Biomechanical Response Using a Myotonometer.

    Get PDF
    Background: Biomechanical stiffness has been linked to risk of injury and found to be a measureable characteristic in musculoskeletal disorders. Specific identification of stiffness may clarify who is most likely to benefit from the trigger point dry needling (TDN). The purpose of this study is to investigate the reliability and concurrent validity of the MyotonPROÂź to the criterion of shear wave ultrasound elastography for the measurement of biomechanical stiffness in the infraspinatus, erector spinae, and gastrocnemius of healthy subjects over increasing muscle contraction. Second purpose is to investigate the biomechanical effects of TDN to latent myofascial trigger points (MTrPs) in the infraspinatus, erector spinae, or gastrocnemius. Research Design and Method: The first phase of the study investigated 30 subjects who completed three levels of muscle contraction in standardized test positions for the infraspinatus, erector spinae and gastrocnemius. Biomechanical stiffness measures were collected using shear wave elastography and MyotonPROÂź. The second phase of the study investigated 60 new subjects who were categorized into infraspinatus, erector spinae, or gastrocnemius group based on an identified latent MTrP. These subjects underwent TDN while monitoring biomechanical stiffness at baseline, immediately post TDN, and 24 hours later. Analysis: Discriminate ability, reliability, and correlations were calculated for measured stiffness variable across the three conditions of contraction in the first phase of the study. Differences between stiffness at baseline and after TDN were calculated in the second phase of the study. Results: Correlation of the two measurement methods in the three muscle regions was significant and strongest in the gastrocnemius. MyotonPRO reliability was excellent, and demonstrated ability to discriminate between the three levels of muscle contraction. In the second phase, immediate decreased stiffness was observed in the MTrP following TDN treatment. Significant decreased stiffness was found in in the erector spinae and gastrocnemius group who also demonstrated a localized twitch response during TDN. Stiffness returned to near baseline values after 24 hours. Discussion: The MyotonPROÂź stiffness measurement was found to be reliable and discriminate across predefined muscle contraction intensities. TDN may cause an immediate change in stiffness but this change was not observed at 24 hours. It is not known whether these effects are present in a symptomatic population or related to improvements in other clinical outcomes. Future studies are necessary to determine if a decrease in biomechanical stiffness is an indication of patient improvement in pain and function

    Enabling Technologies for Co-Robotic Translational Ultrasound and Photoacoustic Imaging

    Get PDF
    Among many medical imaging modalities, medical ultrasound possesses its unique advantages of non-ionizing, real-time, and non-invasive properties. With its safeness, ease of use, and cost-effectiveness, ultrasound imaging has been used in a wide variety of diagnostic applications. Photoacoustic imaging is a hybrid imaging modality merging light and ultrasound, and reveals the tissue metabolism and molecular distribution with the utilization of endo- and exogenous contrast agents. With the emergence of photoacoustic imaging, ultrasound and photoacoustic imaging can comprehensively depict not only anatomical but also functional information of biological tissue. To broaden the impact of translational ultrasound and photoacoustic imaging, this dissertation focuses on the development of enabling technologies and the exploration of associated applications. The goals of these technologies are; (1) Enabling Technologies for Translational Photoacoustic Imaging. We investigated the potential of maximizing the access to translational photoacoustic imaging using a clinical ultrasound scanner and a low-cost light source, instead of widely used customized data acquisition system and expensive high power laser. (2) Co-robotic Ultrasound and Photoacoustic Imaging. We introduced a co-robotic paradigm to make ultrasound/photoacoustic imaging more comprehensive and capable of imaging deeper with higher resolution and wider field-of-view.(3) Advancements on Translational Photoacoustic Imaging. We explored the new use of translational photoacoustic imaging for molecular-based cancer detection and the sensing of neurotransmitter activity in the brain. Together, these parts explore the feasibility of co-robotic translational ultrasound and photoacoustic imaging

    Development and Validation of a Hybrid Virtual/Physical Nuss Procedure Surgical Trainer

    Get PDF
    With continuous advancements and adoption of minimally invasive surgery, proficiency with nontrivial surgical skills involved is becoming a greater concern. Consequently, the use of surgical simulation has been increasingly embraced by many for training and skill transfer purposes. Some systems utilize haptic feedback within a high-fidelity anatomically-correct virtual environment whereas others use manikins, synthetic components, or box trainers to mimic primary components of a corresponding procedure. Surgical simulation development for some minimally invasive procedures is still, however, suboptimal or otherwise embryonic. This is true for the Nuss procedure, which is a minimally invasive surgery for correcting pectus excavatum (PE) – a congenital chest wall deformity. This work aims to address this gap by exploring the challenges of developing both a purely virtual and a purely physical simulation platform of the Nuss procedure and their implications in a training context. This work then describes the development of a hybrid mixed-reality system that integrates virtual and physical constituents as well as an augmentation of the haptic interface, to carry out a reproduction of the primary steps of the Nuss procedure and satisfy clinically relevant prerequisites for its training platform. Furthermore, this work carries out a user study to investigate the system’s face, content, and construct validity to establish its faithfulness as a training platform

    Freehand Three-Dimensional Ultrasound to Evaluate Scapular Movement

    Get PDF
    Altered scapular kinematics have been linked to increases in shoulder pain and pathology. As such, identifying normal scapular movement is integral to preventing pathology and maintaining health of the joint. Existing methods to evaluate scapular movement are invasive, expensive, require exposure to radiation, suffer skin based motion artifacts, or allow for examination only in static postures. Freehand three-dimensional ultrasound offers the unique ability to image bone while being non-invasive, relatively low cost, and free of radiation. This is a novel application of a technology that in the past has been used for needle guided injections and determining changes in organ volumes, but never for evaluating bone movement. We have developed a custom freehand-ultrasound system that shows high repeatability across trials (SEM < 2°) in evaluating scapular kinematics in static postures with the arm at rest and elevated in the sagittal, frontal and scapular planes. Among manual wheelchair users and able-bodied controls we found scapular kinematics with the arm in an elevated position were predicted by scapular and trunk position at rest. We also found BMI ≄ 25, presence of pathology on a physical exam, shoulder abnormalities on a clinical ultrasound exam, and greater than 10 years of wheelchair use resulted in scapular postures associated with shoulder pathology in previous studies. We found no significant differences between wheelchair users and age-matched controls but attribute this to a lack of difference in pathology between the groups. A learning curve was identified over time for capturing quality ultrasound images and it is suggested future studies incorporate ample training time and require raters to meet minimum performance measures set forth by this study. In a subsample of subjects we found increases in external rotation, upward rotation and posterior tilting at incremental angles of humeral elevation during dynamic trials indicating that it is feasible to apply our methods to evaluate dynamic scapular movement. Application of these methods may help to identify shoulder pathology and evaluate the efficacy of interventions to correct altered scapular kinematics

    Cable-driven parallel mechanisms for minimally invasive robotic surgery

    Get PDF
    Minimally invasive surgery (MIS) has revolutionised surgery by providing faster recovery times, less post-operative complications, improved cosmesis and reduced pain for the patient. Surgical robotics are used to further decrease the invasiveness of procedures, by using yet smaller and fewer incisions or using natural orifices as entry point. However, many robotic systems still suffer from technical challenges such as sufficient instrument dexterity and payloads, leading to limited adoption in clinical practice. Cable-driven parallel mechanisms (CDPMs) have unique properties, which can be used to overcome existing challenges in surgical robotics. These beneficial properties include high end-effector payloads, efficient force transmission and a large configurable instrument workspace. However, the use of CDPMs in MIS is largely unexplored. This research presents the first structured exploration of CDPMs for MIS and demonstrates the potential of this type of mechanism through the development of multiple prototypes: the ESD CYCLOPS, CDAQS, SIMPLE, neuroCYCLOPS and microCYCLOPS. One key challenge for MIS is the access method used to introduce CDPMs into the body. Three different access methods are presented by the prototypes. By focusing on the minimally invasive access method in which CDPMs are introduced into the body, the thesis provides a framework, which can be used by researchers, engineers and clinicians to identify future opportunities of CDPMs in MIS. Additionally, through user studies and pre-clinical studies, these prototypes demonstrate that this type of mechanism has several key advantages for surgical applications in which haptic feedback, safe automation or a high payload are required. These advantages, combined with the different access methods, demonstrate that CDPMs can have a key role in the advancement of MIS technology.Open Acces

    Engineering precision surgery: Design and implementation of surgical guidance technologies

    Get PDF
    In the quest for precision surgery, this thesis introduces several novel detection and navigation modalities for the localization of cancer-related tissues in the operating room. The engineering efforts have focused on image-guided surgery modalities that use the complementary tracer signatures of nuclear and fluorescence radiation. The first part of the thesis covers the use of “GPS-like” navigation concepts to navigate fluorescence cameras during surgery, based on SPECT images of the patient. The second part of the thesis introduces several new imaging modalities such as a hybrid 3D freehand Fluorescence and freehand SPECT imaging and navigation device. Furthermore, to improve the detection of radioactive tracer-emissions during robot-assisted laparoscopic surgery, a tethered DROP-IN gamma probe is introduced. The clinical indications that are used to evaluate the new technologies were all focused on sentinel lymph node procedures in urology (i.e. prostate and penile cancer). Nevertheless, all presented techniques are of such a nature, that they can be applied to different surgical indications, including sentinel lymph node and tumor-receptor-targeted procedures, localization the primary tumor and metastatic spread. This will hopefully contribute towards more precise, less invasive and more effective surgical procedures in the field of oncology. Crystal Photonics GmbH Eurorad S.A. Intuitive Surgical Inc. KARL STORZ Endoscopie Nederland B.V. MILabs B.V. PI Medical Diagnostic Equipment B.V. SurgicEye GmbH Verb Surgical Inc.LUMC / Geneeskund
    • 

    corecore