559 research outputs found

    Biological investigation and predictive modelling of foaming in anaerobic digester

    Get PDF
    Anaerobic digestion (AD) of waste has been identified as a leading technology for greener renewable energy generation as an alternative to fossil fuel. AD will reduce waste through biochemical processes, converting it to biogas which could be used as a source of renewable energy and the residue bio-solids utilised in enriching the soil. A problem with AD though is with its foaming and the associated biogas loss. Tackling this problem effectively requires identifying and effectively controlling factors that trigger and promote foaming. In this research, laboratory experiments were initially carried out to differentiate foaming causal and exacerbating factors. Then the impact of the identified causal factors (organic loading rate-OLR and volatile fatty acid-VFA) on foaming occurrence were monitored and recorded. Further analysis of foaming and nonfoaming sludge samples by metabolomics techniques confirmed that the OLR and VFA are the prime causes of foaming occurrence in AD. In addition, the metagenomics analysis showed that the phylum bacteroidetes and proteobacteria were found to be predominant with a higher relative abundance of 30% and 29% respectively while the phylum actinobacteria representing the most prominent filamentous foam causing bacteria such as Norcadia amarae and Microthrix Parvicella had a very low and consistent relative abundance of 0.9% indicating that the foaming occurrence in the AD studied was not triggered by the presence of filamentous bacteria. Consequently, data driven models to predict foam formation were developed based on experimental data with inputs (OLR and VFA in the feed) and output (foaming occurrence). The models were extensively validated and assessed based on the mean squared error (MSE), root mean squared error (RMSE), R2 and mean absolute error (MAE). Levenberg Marquadt neural network model proved to be the best model for foaming prediction in AD, with RMSE = 5.49, MSE = 30.19 and R2 = 0.9435. The significance of this study is the development of a parsimonious and effective modelling tool that enable AD operators to proactively avert foaming occurrence, as the two model input variables (OLR and VFA) can be easily adjustable through simple programmable logic controller

    Anaerobic co-digestion: A critical review of mathematical modelling for performance optimization

    Full text link
    © 2016 Anaerobic co-digestion (AcoD) is a pragmatic approach to simultaneously manage organic wastes and produce renewable energy. This review demonstrates the need for improving AcoD modelling capacities to simulate the complex physicochemical and biochemical processes. Compared to mono-digestion, AcoD is more susceptible to process instability, as it operates at a higher organic loading and significant variation in substrate composition. Data corroborated here reveal that it is essential to model the transient variation in pH and inhibitory intermediates (e.g. ammonia and organic acids) for AcoD optimization. Mechanistic models (based on the ADM1 framework) have become the norm for AcoD modelling. However, key features in current AcoD models, especially relationships between system performance and co-substrates’ properties, organic loading, and inhibition mechanisms, remain underdeveloped. It is also necessary to predict biogas quantity and composition as well as biosolids quality by considering the conversion and distribution of sulfur, phosphorus, and nitrogen during AcoD

    Reducing the Anaerobic Digestion Model No. 1 for its application to an industrial wastewater treatment plant treating winery effluent wastewater

    Get PDF
    International audienceThe Anaerobic Digestion Model No. 1 (ADM1) is a complex model which is widely accepted as a common platform for anaerobic process modeling and simulation. However, it has a large number of parameters and states that hinder its calibration and use in control applications. A principal component analysis (PCA) technique was extended and applied to simplify the ADM1 using data of an industrial wastewater treatment plant processing winery effluent. The method shows that the main model features could be obtained with a minimum of two reactions. A reduced stoichiometric matrix was identified and the kinetic parameters were estimated on the basis of representative known biochemical kinetics (Monod and Haldane). The obtained reduced model takes into account the measured states in the anaerobic wastewater treatment (AWT) plant and reproduces the dynamics of the process fairly accurately. The reduced model can support on-line control, optimization and supervision strategies for AWT plants

    Benchmarking of Control Strategies for Wastewater Treatment Plants

    Get PDF
    Wastewater treatment plants are large non-linear systems subject to large perturbations in wastewater flow rate, load and composition. Nevertheless these plants have to be operated continuously, meeting stricter and stricter regulations. Many control strategies have been proposed in the literature for improved and more efficient operation of wastewater treatment plants. Unfortunately, their evaluation and comparison – either practical or based on simulation – is difficult. This is partly due to the variability of the influent, to the complexity of the biological and biochemical phenomena and to the large range of time constants (from a few minutes to several days). The lack of standard evaluation criteria is also a tremendous disadvantage. To really enhance the acceptance of innovative control strategies, such an evaluation needs to be based on a rigorous methodology including a simulation model, plant layout, controllers, sensors, performance criteria and test procedures, i.e. a complete benchmarking protocol.  This book is a Scientific and Technical Report produced by the IWA Task Group on Benchmarking of Control Strategies for Wastewater Treatment Plants. The goal of the Task Group includes developing models and simulation tools that encompass the most typical unit processes within a wastewater treatment system (primary treatment, activated sludge, sludge treatment, etc.), as well as tools that will enable the evaluation of long-term control strategies and monitoring tasks (i.e. automatic detection of sensor and process faults). Work on these extensions has been carried out by the Task Group during the past five years, and the main results are summarized in Benchmarking of Control Strategies for Wastewater Treatment Plants. Besides a description of the final version of the already well-known Benchmark Simulation Model no. 1 (BSM1), the book includes the Benchmark Simulation Model no. 1 Long-Term (BSM1_LT) – with focus on benchmarking of process monitoring tasks – and the plant-wide Benchmark Simulation Model no. 2 (BSM2).

    A partition of unity boundary element method for transient wave propagation

    Get PDF

    An immittance spectroscopy study of cementitious materials during early hydration

    Get PDF
    • …
    corecore