119 research outputs found

    Design of a Control System for a Reconfigurable Engine Assembly Line

    Get PDF
    Today’s automotive manufacturing environment is dynamic. It is characterized by short life cycles of products especially in powertrain, due in part to changing Government regulations for fuel economy. In the USA, the National Highway Traffic and Safety Administration (NHTSA), Corporate Average Fuel Economy (CAFE) mandates an average of 29 miles per gallon (mpg), gradually increasing to 35.5 mpg by 2016 and 54.5 mpg towards 2025. Life cycles of engines and transmissions have consequently shortened, driving automakers to develop and manufacture more efficient powertrains. Not long ago, plants produced engines for decades, with minor modifications warranting slight manufacturing line rework. Conversely, today’s changing trends require machines and complete engine line overhauls rendering initial setups obsolete. Automakers compete to satisfy government regulations for best mileage and also lower manufacturing cost, thus the adoption of Reconfigurable Manufacturing Systems (RMS). Production lines follow modularity in designs, for hardware and software, to adapt to new business conditions, economically and time-wise. Information Technology (IT) and Controls are growing closer with the line of demarcation disappearing in manufacturing. Controls are benefiting from opportunities in IT, hardware and software. The advent of agent-based technology which are autonomous, cooperative and extendible in different production activities, helped to develop controls for RMS in academia. Component-based software suitable for RMS modularity and plug-and-play hardware/software components has gained decades of popularity in the software industry. This thesis implements distributed controls imbedding component-based technology and IEC 61311-3 function block standard for automotive engine assembly, which will contribute to these developments. The control architecture provides reconfigurability which is lacking in current manufacturing systems. The research imbeds: 1- Reconfigurability - Fitting RMS-designed hardware towards new manufacturing, 2- Reusability - Building software library for reuse across assembly lines, and 3- Plug-and-Play - Embedding easy to assemble software components (function blocks)

    Engineering framework for service-oriented automation systems

    Get PDF
    Tese de doutoramento. Engenharia Informática. Universidade do Porto. Faculdade de Engenharia. 201

    A service-oriented approach to embedded component-based manufacturing automation

    Get PDF
    This thesis is focused on the application of Component-Based (CB) technology to shop oor devices using a Service Oriented Architecture (SOA) and Web Services (WS) for the purpose of realising future generation agile manufacturing systems. The environment of manufacturing enterprises is now characterised by frequently changing market demands, time-to-market pressure, continuously emerging new technologies and global competition. Under these circumstances, manufacturing systems need to be agile and automation systems need to support this agility. More speci cally, an open, exible automation environment with plug and play connectivity is needed. Technically, this requires the easy connectivity of hardware devices and software components from di erent vendors. Functionally, there is a need of interoperability and integration of control functions on di erent hierarchical levels ranging from eld level to various higher level applications such as process control and operations management services. [Continues.

    Specifications of a device interface for service-oriented automation control components

    Get PDF
    Service-oriented paradigm is being used to develop distributed and reconfigurable control solutions for factory automation environments. Since service-oriented automation control components are logical entities that provide and consume services, they may have an interface that maps the logical processes into the actions of the representative physical mechatronics. The inter-connection with the physical hardware devices, namely accessing I/Os, is a crucial issue to achieve the vertical IT-enterprise integration in these service-oriented systems, covering the shop floor device control level. This paper describes a device interface approach, in the context of a service-oriented control architecture, in which High-level Petri nets are used as the control description to access to the physical device. The outgoing features of the solution allow integrating the physical behavior into the control of automation components and consequently thereby incorporate it in the modular service-oriented control architecture

    Simulation and Control of a Cyber-Physical System under IEC 61499 Standard

    Get PDF
    IEC 61499 standard provides an architecture for control systems using function blocks (FB), languages, and semantics. These devices can be interconnected and communicate with each other. Each device contains several resources and algorithms with a communication FB at the end, which can be created, configured, and deleted without affecting other resources. Physical element can be represented by a FB that encapsulates the functionality (data/events, process, return data/events) in a single module that can be reused and combined. This work presents a simplified implementation of a modular control system using a low-cost device. In the prototyping of the application, we use 4diac to control, model and validate the implementation of the system on a programmable logic controller. It is proved that this approach can be used to model and simulate a cyber-physical system as a single element or in a networked combination. The control models provide a reusable FB design.We acknowledge the financial support of CIDEM, R&D unit funded by FCT – Portuguese Foundation for the Development of Science and Technology, Ministry of Science, Technology and Higher Education, under the Project UID/EMS/0615/2019, and it was supported by FCT, through INEGI and LAETA, under project UIDB/50022/2020.info:eu-repo/semantics/publishedVersio

    Web service control of component-based agile manufacturing systems

    Get PDF
    Current global business competition has resulted in significant challenges for manufacturing and production sectors focused on shorter product lifecyc1es, more diverse and customized products as well as cost pressures from competitors and customers. To remain competitive, manufacturers, particularly in automotive industry, require the next generation of manufacturing paradigms supporting flexible and reconfigurable production systems that allow quick system changeovers for various types of products. In addition, closer integration of shop floor and business systems is required as indicated by the research efforts in investigating "Agile and Collaborative Manufacturing Systems" in supporting the production unit throughout the manufacturing lifecycles. The integration of a business enterprise with its shop-floor and lifecycle supply partners is currently only achieved through complex proprietary solutions due to differences in technology, particularly between automation and business systems. The situation is further complicated by the diverse types of automation control devices employed. Recently, the emerging technology of Service Oriented Architecture's (SOA's) and Web Services (WS) has been demonstrated and proved successful in linking business applications. The adoption of this Web Services approach at the automation level, that would enable a seamless integration of business enterprise and a shop-floor system, is an active research topic within the automotive domain. If successful, reconfigurable automation systems formed by a network of collaborative autonomous and open control platform in distributed, loosely coupled manufacturing environment can be realized through a unifying platform of WS interfaces for devices communication. The adoption of SOA- Web Services on embedded automation devices can be achieved employing Device Profile for Web Services (DPWS) protocols which encapsulate device control functionality as provided services (e.g. device I/O operation, device state notification, device discovery) and business application interfaces into physical control components of machining automation. This novel approach supports the possibility of integrating pervasive enterprise applications through unifying Web Services interfaces and neutral Simple Object Access Protocol (SOAP) message communication between control systems and business applications over standard Ethernet-Local Area Networks (LAN's). In addition, the re-configurability of the automation system is enhanced via the utilisation of Web Services throughout an automated control, build, installation, test, maintenance and reuse system lifecycle via device self-discovery provided by the DPWS protocol...cont'd

    Recent developments and future trends of industrial agents

    Get PDF
    The agent technology provides a new way to design and engineer control solutions based on the decentralization of control over distributed structures, addressing the current requirements for modern control systems in industrial domains. This paper presents the current situation of the development and deployment of agent technology, discussing the initiatives and the current trends faced for a wider dissemination and industrial adoption, based on the work that is being carried out by the IEEE IES Technical Committee on Industrial Agents

    Demonstration of Transformable Manufacturing Systems through the Evolvable Assembly Systems Project

    Get PDF
    © 2019 SAE International. All Rights Reserved. Evolvable Assembly Systems is a five year UK research council funded project into flexible and reconfigurable manufacturing systems. The principal goal of the research programme has been to define and validate the vision and support architecture, theoretical models, methods and algorithms for Evolvable Assembly Systems as a new platform for open, adaptable, context-aware and cost effective production. The project is now coming to a close; the concepts developed during the project have been implemented on a variety of demonstrators across a number of manufacturing domains including automotive and aerospace assembly. This paper will show the progression of demonstrators and applications as they increase in complexity, specifically focussing on the Future Automated Aerospace Assembly Phase 1 technology demonstrator (FA3D). The FA3D Phase 1 demonstrated automated assembly of aerospace products using precision robotic processes in conjunction with low-cost reconfigurable fixturing supported by large volume metrology. This was underpinned by novel agent-based control for transformable batch-size-of-one production. The paper will conclude by introducing Phase 2 of the Future Automated Aerospace Assembly Demonstrator - currently in development - that will translate the Evolvable Assembly Systems research to a higher technology readiness level and address the challenges of scalable and transformable manufacturing systems

    Describing Structure and Complex Interactions in Multi-Agent-Based Industrial Cyber-Physical Systems

    Get PDF
    The description of structure and complex interactions in Multi-agent-based Industrial Cyber-physical (MAS-ICPS) systems has been elusively addressed in the literature. Existing works, grounded on model-based engineering, have been successful at characterizing and solving system integration problems. However, they fail to describe accurately the collective and dynamic execution behaviour of large and complex industrial systems, particularly in more discrete production domains, such as: automotive, home appliances, aerospace, food and beverages, etc. In these domains, the execution flow diverts dynamically due to production disturbances, custom orders, fluctuations in demand in mixed model production, faults, quality-control and product rework, etc. These dynamic conditions require re-allocation and reconfiguration of production resources, redirection of production flows, re-scheduling of orders, etc. A meta-model for describing the structure and complex interactions in MAS-ICPS is defined in this paper. This contribution goes beyond the State-Of-The-Art (SOTA) as the proposed meta-model describes structure, as many other literature contributions, but also describes the execution behaviour of arbitrarily complex interactions. The previous is achieved with the introduction of general execution flow control operators in the meta-model. These operators cover, among other aspects, delegation of the execution flow and dynamic decision making. Additionally, the contribution also goes beyond the SOTA by including validation mechanisms for the models generated by the meta-model. Finally, the contribution adds to the current literature by providing a meta-model focusing on production execution and not just on describing the structural connectivity aspects of ICPSs.publishersversionpublishe

    Component-based control system development for agile manufacturing machine systems

    Get PDF
    It is now a common sense that manufactures including machine suppliers and system integrators of the 21 st century will need to compete on global marketplaces, which are frequently shifting and fragmenting, with new technologies continuously emerging. Future production machines and manufacturing systems need to offer the "agility" required in providing responsiveness to product changes and the ability to reconfigure. The primary aim for this research is to advance studies in machine control system design, in the context of the European project VIR-ENG - "Integrated Design, Simulation and Distributed Control of Agile Modular Machinery"
    corecore