1,018 research outputs found

    Feedback Control of an Exoskeleton for Paraplegics: Toward Robustly Stable Hands-free Dynamic Walking

    Get PDF
    This manuscript presents control of a high-DOF fully actuated lower-limb exoskeleton for paraplegic individuals. The key novelty is the ability for the user to walk without the use of crutches or other external means of stabilization. We harness the power of modern optimization techniques and supervised machine learning to develop a smooth feedback control policy that provides robust velocity regulation and perturbation rejection. Preliminary evaluation of the stability and robustness of the proposed approach is demonstrated through the Gazebo simulation environment. In addition, preliminary experimental results with (complete) paraplegic individuals are included for the previous version of the controller.Comment: Submitted to IEEE Control System Magazine. This version addresses reviewers' concerns about the robustness of the algorithm and the motivation for using such exoskeleton

    Trajectory Optimization and Machine Learning to Design Feedback Controllers for Bipedal Robots with Provable Stability

    Full text link
    This thesis combines recent advances in trajectory optimization of hybrid dynamical systems with machine learning and geometric control theory to achieve unprecedented performance in bipedal robot locomotion. The work greatly expands the class of robot models for which feedback controllers can be designed with provable stability. The methods are widely applicable beyond bipedal robots, including exoskeletons, and prostheses, and eventually, drones, ADAS, and other highly automated machines. One main idea of this thesis is to greatly expand the use of multiple trajectories in the design of a stabilizing controller. The computation of many trajectories is now feasible due to new optimization tools. The computations are not fast enough to apply in the real-time, however, so they are not feasible for model predictive control (MPC). The offline “library” approach will encounter the curse of dimensionality for the high-dimensional models common in bipedal robots. To overcome these obstructions, we embed a stable walking motion in an attractive low-dimensional surface of the system's state space. The periodic orbit is now an attractor of the low-dimensional state-variable model but is not attractive in the full-order system. We then use the special structure of mechanical models associated with bipedal robots to embed the low-dimensional model in the original model in such a manner that the desired walking motions are locally exponentially stable. The ultimate solution in this thesis will generate model-based feedback controllers for bipedal robots, in such a way that the closed-loop system has a large stability basin, exhibits highly agile, dynamic behavior, and can deal with significant perturbations coming from the environment. In the case of bipeds: “model-based” means that the controller will be designed on the basis of the full floating-base dynamic model of the robot, and not a simplified model, such as the LIP (Linear Inverted Pendulum). By “agile and dynamic” is meant that the robot moves at the speed of a normal human or faster while walking off a curb. By “significant perturbation” is meant a human tripping, and while falling, throwing his/her full weight into the back of the robot.PHDMechanical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/145992/1/xda_1.pd

    Control and identification of bipedal humanoid robots : stability analysis and experiments

    Get PDF

    Locomotion Control of Hexapod Walking Robot with Four Degrees of Freedom per Leg

    Get PDF
    V této práci představujeme nového šestinohého robota jménem HAntR, kterého jsme vytvořili dle potřeb Laboratoře výpočetní robotiky Centra umělé inteligence fakulty Elektrotechnické Českého vysokého učení technického v Praze. Jeho hlavním účelem jest vylepšit schopnosti pohybu v těžkém terénu původního robotu přidáním čtvrtého stupně volnosti každé noze. Na základě nově navržené nohy jsme také přepracovali celé tělo robotu tak, aby splnilo i další požadavky, jako například menší rozměry, či možnost osazení alespoň šesti Lithium-Iontovými monočlánky. V práci pečlivě popisujeme motivace a úvahy, které nás k výslednému návrhu vedly. Uvádíme řešení přímé i inverzní kinematické úlohy řešené pomocí podmínky na ideální orientaci konce nohy a uvažující i důležité kinematické singularity. Navržený robot byl vyzkoušen v několika experimentech, při kterých byl použit námi navržený řídicí systém napsaný v jazyce C++. Ukázalo se, že HAntR vydrží díky zvýšené energetické hustotě a lepšímu rozkladu sil v končetinách autonomně fungovat přes hodinu. Robot je také schopen jít rychlostí až 0.42m/s, což předčí mnohé srovnatelné roboty. Při experimentu, kdy robot stál na nakloněné rovině, bylo prokázáno zlepšení oproti předchozímu robotu. A také jsme dle pokynů této práce potvrdili, že i HAntR je schopen adaptivní chůze spoléhající pouze na poziční zpětnou vazbu.In this thesis a novel six-legged robot called HAntR is presented. The robot was developed according to needs of the Robotics Laboratory, at the Artificial Intelligent Center, Faculty of Electrical Engineering, Czech Technical University in Prague. Its main purpose is enhancing rough-terrain movement capabilities by upgrading a former design by adding fourth degree of freedom to each leg. We also revised robot torso to fit new leg design and incorporate other requirements such as smaller dimensions with space for at least six Lithium-Ion cells. We thoroughly describe motivations and considerations that led us to the presented particular solution. Further, the solutions of forward and inverse kinematic tasks with partial orientation constraint and important singularities avoidance are presented. The proposed design has been evaluated in several experimental deployments, which utilised developed software controller written in C++. Endurance tests showed, that HAntR is able to remotely operate for over an hour thanks to increased energy density. Maximal speed test resulted to 0.42m/s during tripod gait, which outpaces most of the comparable robotic platforms. Experiment where HAntR stood on platform with varying inclination showed qualitative improvement against former robot. Finally, in accord with the thesis assignment, we proved that HAntR is able to perform walking with adaptive gait using positional feedback only

    Seat belt control : from modeling to experiment

    Get PDF
    In the last decades, vehicle safety has improved considerably. For example, major improvements have been made in the area of the structural crashworthiness of the vehicle, various driver assistance systems have been developed, and enhancements can be found in the restraint systems, the final line of defense in occupant protection. Despite this increase of vehicle safety measures, many fatalities still occur in road transportation. Regarding the unavoidable crashes, a significant amount can be attributed to the fact that the seat belt system does not perform optimally. No crash event or occupant is identical, yet conventional seat belts are – in general – not able to adjust their characteristics accordingly. The system is therefore optimal for only a limited number of crash scenarios and occupant types. With the current sensor and processor technology, it may be possible to develop a seat belt that continuously adapts to the actual crash and occupant conditions. Such a device is referred to as a Continuous Restraint Control (CRC) system, and the work presented in this thesis contributes to the development of this type of systems. The main idea of seat belt control is to add sensors and actuators to the seat belt system. The force in the seat belt is prescribed by the actuator during the crash, such that the risk of injuries are minimized given the current impact severity and occupant size and position. This concept poses several technological challenges, which are in this thesis divided into four research topics. Although many sensor technologies exist nowadays, so far no methods have been proposed to measure the occupant injury responses in real-time. These responses are essential when deciding on the optimal belt force. In this thesis, a solution has been presented for the problem of real-time estimation of (thoracic) injuries and occupant position during a crash. An estimation is performed based on modelbased filtering of a small number of readily available and cheap sensors. Simulation results with a crash victim model indicate that the injury responses can be estimated with sufficient accuracy for control purposes, but that the estimation heavily depends on the accuracy of the model used in the filter. A numerical controller uses these estimated injury responses to compute the optimal seat belt force. In this computation, it has to be taken into account that the occupant position is constrained during the crash by the available space in the vehicle, since contact with the interior may result in serious injury. The controller therefore has to predict the future occupant motion, using a prediction of the future crash behavior, a choice for the future seat belt force, and a model of the vehicle-occupant-belt system. Given the type of control problem, a Model Predictive Control (MPC) approach is used to develop the controller. Simulation results with crash victim models indicate that using this controller lead to a significant injury risk reduction for the thorax, given that an ideal belt actuator is available. The injury estimator, the prediction and control algorithm proposed in the foregoing are designed with simple mathematical models of occupant, seat belt and vehicle interior. It is therefore recognized that such accurate, manageable models are essential in the development of CRC systems. In this thesis, models of various complexities have been constructed that represent three types of widely used crash test dummies. These models are validated against both numerical as experimental data. The conclusion of this validation is that in frontal crashes, the neck and thoracic injury criteria can well be described by linear (time-invariant) models. However, when the models are to be used in the design of a belt control system, more attention has to be given to the modeling of the chest and seat belt. The severity and duration of a typical impact require a seat belt actuator with challenging specifications. For example, it has to deliver very high forces over a large stroke, it must have a high bandwidth, and must be small enough to be fitted in a vehicle post. These devices do not yet exist. In this thesis, a semi-active belt actuator concept is presented. It is based on a pressure-controlled hydraulic valve, which regulates the belt force through an hydraulic cylinder. The actuator is designed and constructed at the TU/e, and evaluated experimentally. Moreover, a moving sled setup has been developed which allows testing the actuator under impact conditions. Experimental results show that the belt actuator meets the requirements, except for the maximum force. The actuator can therefore at this point be used to prescribe belt forces in a safety belt in low-speed impacts

    Advances in Intelligent Vehicle Control

    Get PDF
    This book is a printed edition of the Special Issue Advances in Intelligent Vehicle Control that was published in the journal Sensors. It presents a collection of eleven papers that covers a range of topics, such as the development of intelligent control algorithms for active safety systems, smart sensors, and intelligent and efficient driving. The contributions presented in these papers can serve as useful tools for researchers who are interested in new vehicle technology and in the improvement of vehicle control systems
    corecore