102 research outputs found

    Validation of Tissue Modelization and Classification Techniques in T1-Weighted MR Brain Images

    Get PDF
    We propose a deep study on tissue modelization and classification Techniques on T1-weighted MR images. Three approaches have been taken into account to perform this validation study. Two of them are based on Finite Gaussian Mixture (FGM) model. The first one consists only in pure gaussian distributions (FGM-EM). The second one uses a different model for partial volume (PV) (FGM-GA). The third one is based on a Hidden Markov Random Field (HMRF) model. All methods have been tested on a Digital Brain Phantom image considered as the ground truth. Noise and intensity non-uniformities have been added to simulate real image conditions. Also the effect of an anisotropic filter is considered. Results demonstrate that methods relying in both intensity and spatial information are in general more robust to noise and inhomogeneities. However, in some cases there is no significant differences between all presented methods

    Validation of Tissue Modelization and Classification Techniques in T1-weighted MR Brain Images

    Get PDF
    We propose a deep study on tissue modelization and classification techniques on T1-weighted MR images. Six approaches have been taken into account to perform this validation study. We consider first the Finite Gaussian Mixture model (A-FGMM) and a Bayes classification. Second method is the same as A-FGMM but introducing a Hidden Markov Random Field (HMRF) model to encode spatial information and classification is then performed by Maximum a Posteriori (MAP). Third, we study a method that models mixture tissues as a linear combination Gaussian pure tissue distributions (C-GPV) and it also performs a Bayes classification. Fourth, method D-GPV-HMRF uses the same image model as method C-GPV but encode spatial information as done in method B-HMRF. Fifth algorithm do not parameterize the intensity distribution but they directly classifies from intensity probabilities (Error Probability, E-EP). Last method it is also non-parametric but uses a HMRF to introduce spatial information (F-NPHMRF). All methods have been tested on a Digital Brain Phantom image considered as the ground truth. Noise and intensity non-uniformities have been added to simulate real image conditions. Results demonstrate that methods relying in both intensity and spatial information are in general more robust to noise and inhomogeneities. We demonstrate also that partial volume (PV) is still not completely well-model even if methods that uses this mixture model perform less errors

    Regional Analysis of the Magnetization Transfer Ratio of the Brain in Mild Alzheimer Disease and Amnestic Mild Cognitive Impairment

    Get PDF
    BACKGROUND AND PURPOSE: Manually drawn VOI-based analysis shows a decrease in magnetization transfer ratio in the hippocampus of patients with Alzheimer disease. We investigated with whole-brain voxelwise analysis the regional changes of the magnetization transfer ratio in patients with mild Alzheimer disease and patients with amnestic mild cognitive impairment. MATERIALS AND METHODS: Twenty patients with mild Alzheimer disease, 27 patients with amnestic mild cognitive impairment, and 30 healthy elderly control subjects were examined with high-resolution T1WI and 3-mm-thick magnetization transfer images. Whole-brain voxelwise analysis of magnetization transfer ratio maps was performed by use of Statistical Parametric Mapping 8 software and was supplemented by the analysis of the magnetization transfer ratio in FreeSurfer parcellation-derived VOIs. RESULTS: Voxelwise analysis showed 2 clusters of significantly decreased magnetization transfer ratio in the left hippocampus and amygdala and in the left posterior mesial temporal cortex (fusiform gyrus) of patients with Alzheimer disease as compared with control subjects but no difference between patients with amnestic mild cognitive impairment and either patients with Alzheimer disease or control subjects. VOI analysis showed that the magnetization transfer ratio in the hippocampus and amygdala was significantly lower (bilaterally) in patients with Alzheimer disease when compared with control subjects (ANOVA with Bonferroni correction, at P < .05). Mean magnetization transfer ratio values in the hippocampus and amygdala in patients with amnestic mild cognitive impairment were between those of healthy control subjects and those of patients with mild Alzheimer disease. Support vector machine-based classification demonstrated improved classification performance after inclusion of magnetization transfer ratio-related features, especially between patients with Alzheimer disease versus healthy subjects. CONCLUSIONS: Bilateral but asymmetric decrease of magnetization transfer ratio reflecting microstructural changes of the residual GM is present not only in the hippocampus but also in the amygdala in patients with mild Alzheimer disease

    Regions of interest computed by SVM wrapped method for Alzheimer’s disease examination from segmented MRI

    Get PDF
    Accurate identification of the most relevant brain regions linked to Alzheimer’s disease (AD) is crucial in order to improve diagnosis techniques and to better understand this neurodegenerative process. For this purpose, statistical classification is suitable. In this work, a novel method based on support vector machine recursive feature elimination (SVM-RFE) is proposed to be applied on segmented brain MRI for detecting the most discriminant AD regions of interest (ROIs). The analyses are performed both on gray and white matter tissues, achieving up to 100% accuracy after classification and outperforming the results obtained by the standard t-test feature selection. The present method, applied on different subject sets, permits automatically determining high-resolution areas surrounding the hippocampal area without needing to divide the brain images according to any common template.This work was partly supported by the MICINN under the TEC2012-34306 project and the Consejería de Innovación, Ciencia y Empresa (Junta de Andalucía, Spain) under the Excellence Projects P09-TIC-4530 and P11-TIC-7103. Data collection and sharing for this project was funded by the Alzheimer’s Disease Neuroimaging Initiative (ADNI; National Institutes of Health Grant U01 AG024904).This research was also supported by NIH grants P30 AG010129, K01 AG030514, and the Dana Foundation

    Structural and cognitive deficits in chronic carbon monoxide intoxication: a voxel-based morphometry study

    Get PDF
    BACKGROUND: Patients with carbon monoxide (CO) intoxication may develop ongoing neurological and psychiatric symptoms that ebb and flow, a condition often called delayed encephalopathy (DE). The association between morphologic changes in the brain and neuropsychological deficits in DE is poorly understood. METHODS: Magnetic resonance imaging and neuropsychological tests were conducted on 11 CO patients with DE, 11 patients without DE, and 15 age-, sex-, and education-matched healthy subjects. Differences in gray matter volume (GMV) between the subgroups were assessed and further correlated with diminished cognitive functioning. RESULTS: As a group, the patients had lower regional GMV compared to controls in the following regions: basal ganglia, left claustrum, right amygdala, left hippocampus, parietal lobes, and left frontal lobe. The reduced GMV in the bilateral basal ganglia, left post-central gyrus, and left hippocampus correlated with decreased perceptual organization and processing speed function. Those CO patients characterized by DE patients had a lower GMV in the left anterior cingulate and right amygdala, as well as lower levels of cognitive function, than the non-DE patients. CONCLUSIONS: Patients with CO intoxication in the chronic stage showed a worse cognitive and morphologic outcome, especially those with DE. This study provides additional evidence of gray matter structural abnormalities in the pathophysiology of DE in chronic CO intoxicated patients

    Partial‐volume modeling reveals reduced gray matter in specific thalamic nuclei early in the time course of psychosis and chronic schizophrenia

    Get PDF
    The structural complexity of the thalamus, due to its mixed composition of gray and white matter, make it challenging to disjoint and quantify each tissue contribution to the thalamic anatomy. This work promotes the use of partial-volume-based over probabilistic-based tissue segmentation approaches to better capture thalamic gray matter differences between patients at different stages of psychosis (early and chronic) and healthy controls. The study was performed on a cohort of 23 patients with schizophrenia, 41 with early psychosis and 69 age and sex-matched healthy subjects. Six tissue segmentation approaches were employed to obtain the gray matter concentration/probability images. The statistical tests were applied at three different anatomical scales: whole thalamus, thalamic subregions and voxel-wise. The results suggest that the partial volume model estimation of gray matter is more sensitive to detect atrophies within the thalamus of patients with psychosis. However all the methods detected gray matter deficit in the pulvinar, particularly in early stages of psychosis. This study demonstrates also that the gray matter decrease varies nonlinearly with age and between nuclei. While a gray matter loss was found in the pulvinar of patients in both stages of psychosis, reduced gray matter in the mediodorsal was only observed in early psychosis subjects. Finally, our analyses point to alterations in a sub-region comprising the lateral posterior and ventral posterior nuclei. The obtained results reinforce the hypothesis that thalamic gray matter assessment is more reliable when the tissues segmentation method takes into account the partial volume effect

    The impact of aging on subregions of the hippocampal complex in healthy adults

    Get PDF
    The hippocampal complex, an anatomical composite of several subregions, is known to decrease in size with increasing age. However, studies investigating which subregions are particularly prone to age-related tissue loss revealed conflicting findings. Possible reasons for such inconsistencies may reflect differences between studies in terms of the cohorts examined or techniques applied to define and measure hippocampal subregions. In the present study, we enhanced conventional MR-based information with microscopically defined cytoarchitectonic probabilities to investigate aging effects on the hippocampal complex in a carefully selected sample of 96 healthy subjects (48 males/48 females) aged 18-69 years. We observed significant negative correlations between age and volumes of the cornu ammonis, fascia dentata, subiculum, and hippocampal-amygdaloid transition area, but not the entorhinal cortex. The estimated age-related annual atrophy rates were most pronounced in the left and right subiculum with -0.23% and -0.22%, respectively. These findings suggest age-related atrophy of the hippocampal complex overall, but with differential effects in its subregions. If confirmed in future studies, such region-specific information may prove useful for the assessment of diseases and disorders known to modulate age-related hippocampal volume loss.NC is funded by Australian Research Council Future fellowship number 120100227. EL is funded by the Eunice Kennedy Shriver National Institute of Child Health & Human Development of the National Institutes of Health under award number R01HD081720 and further supported by the Cousins Center for Psychoneuroimmunology at the University of California, Los Angeles (UCLA)
    • 

    corecore