13,394 research outputs found

    Validation of symbolic expressions in circuit analysis e-learning

    Get PDF
    Symbolic circuit analysis is a cornerstone of electrical engineering education. Solving a suitable set of selected problems is essential to developing professional skills in the field. Anew method is presented for automatic validation of circuit equations representing a student's intermediate steps in the solving process. Providing this immediate feedback may strongly enhance the training effects. The new method was embedded in a Web-based e-learning system and has proved to be useful in circuit analysis training, both at an introductory level and for more advanced problems in analog electronics

    Filtering graphs to check isomorphism and extracting mapping by using the Conductance Electrical Model

    Get PDF
    © 2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/This paper presents a new method of filtering graphs to check exact graph isomorphism and extracting their mapping. Each graph is modeled by a resistive electrical circuit using the Conductance Electrical Model (CEM). By using this model, a necessary condition to check the isomorphism of two graphs is that their equivalent resistances have the same values, but this is not enough, and we have to look for their mapping to find the sufficient condition. We can compute the isomorphism between two graphs in O(N-3), where N is the order of the graph, if their star resistance values are different, otherwise the computational time is exponential, but only with respect to the number of repeated star resistance values, which usually is very small. We can use this technique to filter graphs that are not isomorphic and in case that they are, we can obtain their node mapping. A distinguishing feature over other methods is that, even if there exists repeated star resistance values, we can extract a partial node mapping (of all the nodes except the repeated ones and their neighbors) in O(N-3). The paper presents the method and its application to detect isomorphic graphs in two well know graph databases, where some graphs have more than 600 nodes. (C) 2016 Elsevier Ltd. All rights reserved.Postprint (author's draft

    An overview of decision table literature 1982-1995.

    Get PDF
    This report gives an overview of the literature on decision tables over the past 15 years. As much as possible, for each reference, an author supplied abstract, a number of keywords and a classification are provided. In some cases own comments are added. The purpose of these comments is to show where, how and why decision tables are used. The literature is classified according to application area, theoretical versus practical character, year of publication, country or origin (not necessarily country of publication) and the language of the document. After a description of the scope of the interview, classification results and the classification by topic are presented. The main body of the paper is the ordered list of publications with abstract, classification and comments.

    Formal Modeling of Connectionism using Concurrency Theory, an Approach Based on Automata and Model Checking

    Get PDF
    This paper illustrates a framework for applying formal methods techniques, which are symbolic in nature, to specifying and verifying neural networks, which are sub-symbolic in nature. The paper describes a communicating automata [Bowman & Gomez, 2006] model of neural networks. We also implement the model using timed automata [Alur & Dill, 1994] and then undertake a verification of these models using the model checker Uppaal [Pettersson, 2000] in order to evaluate the performance of learning algorithms. This paper also presents discussion of a number of broad issues concerning cognitive neuroscience and the debate as to whether symbolic processing or connectionism is a suitable representation of cognitive systems. Additionally, the issue of integrating symbolic techniques, such as formal methods, with complex neural networks is discussed. We then argue that symbolic verifications may give theoretically well-founded ways to evaluate and justify neural learning systems in the field of both theoretical research and real world applications

    Deep Understanding of Technical Documents : Automated Generation of Pseudocode from Digital Diagrams & Analysis/Synthesis of Mathematical Formulas

    Get PDF
    The technical document is an entity that consists of several essential and interconnected parts, often referred to as modalities. Despite the extensive attention that certain parts have already received, per say the textual information, there are several aspects that severely under researched. Two such modalities are the utility of diagram images and the deep automated understanding of mathematical formulas. Inspired by existing holistic approaches to the deep understanding of technical documents, we develop a novel formal scheme for the modelling of digital diagram images. This extends to a generative framework that allows for the creation of artificial images and their annotation. We contribute on the field with the creation of a novel synthetic dataset and its generation mechanism. We propose the conversion of the pseudocode generation problem to an image captioning task and provide a family of techniques based on adaptive image partitioning. We address the mathematical formulas’ semantic understanding by conducting an evaluating survey on the field, published in May 2021. We then propose a formal synthesis framework that utilized formula graphs as metadata, reaching for novel valuable formulas. The synthesis framework is validated by a deep geometric learning mechanism, that outsources formula data to simulate the missing a priori knowledge. We close with the proof of concept, the description of the overall pipeline and our future aims

    Model Checking in Industrial Hardware Design

    Get PDF
    • …
    corecore