647 research outputs found

    The 3' to 5' exoribonuclease DIS3: from structure and mechanisms to biological functions and role in human disease

    Get PDF
    DIS3 is a conserved exoribonuclease and catalytic subunit of the exosome, a protein complex involved in the 3’ to 5’ degradation and processing of both nuclear and cytoplasmic RNA species. Recently, aberrant expression of DIS3 has been found to be implicated in a range of different cancers. Perhaps most striking is the finding that DIS3 is recurrently mutated in 11% of multiple myeloma patients. Much work has been done to elucidate the structural and biochemical characteristics of DIS3, including the mechanistic details of its role as an effector of RNA decay pathways. Nevertheless, we do not understand how DIS3 mutations can lead to cancer. There are a number of studies that pertain to the function of DIS3 at the organismal level. Mutant phenotypes in S.pombe, S.cerevisae and Drosophila suggest DIS3 homologues have a common role in cell-cycle progression and microtubule assembly. DIS3 has also recently been implicated in antibody diversification of mouse B-cells. This article aims to review current knowledge of the structure, mechanisms and functions of DIS3 as well as highlighting the genetic patterns observed within myeloma patients, in order to yield insight into the putative role of DIS3 mutations in oncogenesis

    Comparison of gene expression profile between human chondrons and chondrocytes: a cDNA microarray study

    Get PDF
    OBJECTIVE: The chondron is a basic unit of articular cartilage that includes the chondrocyte and its pericellular matrix (PCM). This current study was designed to investigate the effects of the chondron PCM on the gene expression profile of chondrocytes. DESIGN: Chondrons and chondrocytes were enzymatically isolated from human articular cartilage, and maintained in pellet culture. Pellets of chondrons or chondrocytes were collected at days 1, 3 and 5 for cDNA microarray analysis. RESULTS: In comparison with chondrocytes alone, chondrons had 258 genes, in a broad range of functional categories, either up- or downregulated at the three time points tested. At day 1, 26 genes were significantly upregulated in chondrons and four downregulated in comparison to chondrocytes. At day 3, the number of upregulated chondron genes was 97 and the number downregulated was 43. By day 5, there were more downregulated genes (56) than upregulated genes (32) in chondrons. Upregulation of a group of heat shock proteins (HSPA1A, HSPA2 and HSPA8) in chondrons was validated by real time reverse transcription polymerase chain reaction (RT-PCR). Genes related to chondrocyte hypertrophy and dedifferentiation such as SSP1 and DCN were downregulated in chondrons as compared to the expression in chondrocytes. CONCLUSION: The presence of the PCM in chondrons has a profound influence on chondrocyte gene expression. Upregulation of the heat shock protein 70 may contribute to the robustness and active matrix production of chondrons. The intact PCM may further stabilize the phenotype of chondrocytes within chondrons

    Comparative analyses of time-course gene expression profiles of the long-lived sch9Δ mutant

    Get PDF
    In an attempt to elucidate the underlying longevity-promoting mechanisms of mutants lacking SCH9, which live three times as long as wild type chronologically, we measured their time-course gene expression profiles. We interpreted their expression time differences by statistical inferences based on prior biological knowledge, and identified the following significant changes: (i) between 12 and 24 h, stress response genes were up-regulated by larger fold changes and ribosomal RNA (rRNA) processing genes were down-regulated more dramatically; (ii) mitochondrial ribosomal protein genes were not up-regulated between 12 and 60 h as wild type were; (iii) electron transport, oxidative phosphorylation and TCA genes were down-regulated early; (iv) the up-regulation of TCA and electron transport was accompanied by deep down-regulation of rRNA processing over time; and (v) rRNA processing genes were more volatile over time, and three associated cis-regulatory elements [rRNA processing element (rRPE), polymerase A and C (PAC) and glucose response element (GRE)] were identified. Deletion of AZF1, which encodes the transcriptional factor that binds to the GRE element, reversed the lifespan extension of sch9Δ. The significant alterations in these time-dependent expression profiles imply that the lack of SCH9 turns on the longevity programme that extends the lifespan through changes in metabolic pathways and protection mechanisms, particularly, the regulation of aerobic respiration and rRNA processing

    Quantitative genome-wide studies of RNA metabolism in yeast

    Get PDF
    Gene expression and its regulation are fundamental processes in every living cell and organism. RNA molecules hereby play a central role by translating the genetic information into proteins, by regulating gene activity and by forming structural components. The kinetics of RNA metabolism differ widely between genes and conditions and play an important role for cellular processes, but how this is achieved remains poorly understood. Here, we used a novel experimental protocol that allows profiling of newly transcribed RNAs in conjunction with an advanced computational modeling pipeline to explore the kinetics of RNA metabolism and the underlying genetic determinants.In the first study, we investigated cell cycle regulated gene expression and the contributions of synthesis and degradation to mRNA levels in S.cerevisiae. During the cell cycle, the levels of hundreds of mRNAs change in a periodic manner, but how this is carried out by alterations in the rates of mRNA synthesis and degradation has not been studied systematically. We were able to derive mRNA synthesis and degradation rates every 5 minutes during the cell cycle, and thus provide for the first time a high-resolution time series of RNA metabolism during the cell cycle. A novel statistical model identified 479 genes that show periodic changes in mRNA synthesis and generally also periodic changes in their mRNA degradation rates. Peaks of mRNA degradation follow peaks of mRNA synthesis, resulting in sharp and high peaks of mRNA levels at defined times during the cell cycle. Whereas the timing of mRNA synthesis is set by upstream DNA motifs and their associated transcription factors (TFs), the synthesis rate of a periodically expressed gene is apparently set by its core promoter. In the second study, we developed metabolic labeling with RNA-Seq (4tU-Seq) and novel computational methods to gain further insights into the kinetics of RNA metabolism and its regulation. To decrypt the regulatory code of the genome, sequence elements must be defined that determine RNA turnover and thus gene expression. Here we attempt such decryption in an eukaryotic model organism, the fission yeast S. pombe. We first derived an improved genome annotation that redefines borders of 36% of expressed mRNAs and adds 487 non-coding RNAs (ncRNAs). We then combined RNA labeling in-vivo with mathematical modeling to obtain rates of RNA synthesis and degradation for 5,484 expressed RNAs and splicing rates for 4,958 introns. We identified functional sequence elements in DNA and RNA that control RNA metabolic rates, and quantified the contributions of individual nucleotides to RNA synthesis, splicing, and degradation. Our approach reveals distinct kinetics of mRNA and ncRNA metabolism, separates antisense regulation by transcription interference from RNA interference, and provides a general tool for studying the regulatory code of genomes
    • …
    corecore