671 research outputs found

    Cloud optical depth retrievals from the Aerosol Robotic Network (AERONET) cloud mode observations

    Get PDF
    Cloud optical depth is one of the most poorly observed climate variables. The new “cloud mode” capability in the Aerosol Robotic Network (AERONET) will inexpensively yet dramatically increase cloud optical depth observations in both number and accuracy. Cloud mode optical depth retrievals from AERONET were evaluated at the Atmospheric Radiation Measurement program’s Oklahoma site in sky conditions ranging from broken clouds to overcast. For overcast cases, the 1.5 min average AERONET cloud mode optical depths agreed to within 15% of those from a standard ground‐based flux method. For broken cloud cases, AERONET retrievals also captured rapid variations detected by the microwave radiometer. For 3 year climatology derived from all nonprecipitating clouds, AERONET monthly mean cloud optical depths are generally larger than cloud radar retrievals because of the current cloud mode observation strategy that is biased toward measurements of optically thick clouds. This study has demonstrated a new way to enhance the existing AERONET infrastructure to observe cloud optical properties on a global scale

    Aerosol Data Sources and Their Roles within PARAGON

    Get PDF
    We briefly but systematically review major sources of aerosol data, emphasizing suites of measurements that seem most likely to contribute to assessments of global aerosol climate forcing. The strengths and limitations of existing satellite, surface, and aircraft remote sensing systems are described, along with those of direct sampling networks and ship-based stations. It is evident that an enormous number of aerosol-related observations have been made, on a wide range of spatial and temporal sampling scales, and that many of the key gaps in this collection of data could be filled by technologies that either exist or are expected to be available in the near future. Emphasis must be given to combining remote sensing and in situ active and passive observations and integrating them with aerosol chemical transport models, in order to create a more complete environmental picture, having sufficient detail to address current climate forcing questions. The Progressive Aerosol Retrieval and Assimilation Global Observing Network (PARAGON) initiative would provide an organizational framework to meet this goal

    Remote sensing of aerosols in the Arctic for an evaluation of global climate model simulations

    Get PDF
    This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are madeIn this study Moderate Resolution Imaging Spectroradiometer (MODIS) Aqua retrievals of aerosol optical thickness (AOT) at 555 nm are compared to Sun photometer measurements from Svalbard for a period of 9 years. For the 642 daily coincident measurements that were obtained, MODIS AOT generally varies within the predicted uncertainty of the retrieval over ocean (ΔAOT=±0.03±0.05·AOT). The results from the remote sensing have been used to examine the accuracy in estimates of aerosol optical properties in the Arctic, generated by global climate models and from in situ measurements at the Zeppelin station, Svalbard. AOT simulated with the Norwegian Earth System Model/Community Atmosphere Model version 4 Oslo global climate model does not reproduce the observed seasonal variability of the Arctic aerosol. The model overestimates clear-sky AOT by nearly a factor of 2 for the background summer season, while tending to underestimate the values in the spring season. Furthermore, large differences in all-sky AOT of up to 1 order of magnitude are found for the Coupled Model Intercomparison Project phase 5 model ensemble for the spring and summer seasons. Large differences between satellite/ground-based remote sensing of AOT and AOT estimated from dry and humidified scattering coefficients are found for the subarctic marine boundary layer in summer.Peer reviewe

    Analysis of linear long-term trend of aerosol optical thickness derived from SeaWiFS using BAER over Europe and South China

    Get PDF
    The main purposes of the present paper are not only to investigate linear long-term trends of Aerosol Optical Thickness (AOT) at 443 and 555 nm over regions in Europe and South China, but also to show the uncertainty caused by cloud disturbance in the trend analysis of cloud-free aerosol. These research areas are the densely urbanised and often highly polluted regions. The study uses the Bremen AErosol Retrieval (BAER) and Sea-viewing Wide Field-of-view Sensor (SeaWiFS) data for AOT retrievals in the specified regions from October 1997 to May 2008. In order to validate the individually retrieved AOTs and the corresponding trends, AErosol RObotic NETwork (AERONET) level 2.0 data have been used. The retrieved AOTs were in good agreement with those of AERONET (0.79 ≀ <i>R</i> ≀ 0.88, 0.08 ≀ RMSD ≀ 0.13). The contamination of the aerosol retrievals and/or AERONET observations by thin clouds can significantly degrade the AOT and lead to statistically non-representative monthly-means, especially during cloudy seasons. Therefore an inter-correction method has been developed and applied. The "corrected" trends for both BAER SeaWiFS and AERONET AOT were similar and showed in average a relative difference of ∼25.19%. In general terms, negative trends (decrease of aerosol loading) were mainly observed over European regions, with magnitudes up to −0.00453 and −0.00484 yr<sup>−1</sup> at 443 and 555 nm, respectively. In contrast, the trend in Pearl River Delta was positive, most likely attributed to rapid urbanization and industrialization. The magnitudes of AOT increased by +0.00761 and +0.00625 yr<sup>−1</sup> respectively at 443 and 555 nm

    Global and regional trends of Aerosol Optical Thickness derived using satellite- and ground-based observations

    Get PDF
    Atmospheric aerosol plays a critical role for human health, air quality, long range transport of pollution, and the Earth s radiative balance, thereby influencing global climate change. To test our scientific understanding and provide an evidence base for policymakers, long-term temporal changes of local, regional, and global aerosols are needed. Remote sensing from satellite borne and ground based observations offers unique opportunities to provide such data. However, only a few studies have discussed the limitations, associated with unrepresentative sampling originating from large/persistent cloud disturbance and limited/different sampling (limited orbital periods and different sampling times) in the trend analysis. Using a linear weighted model, the long-term trends of global AOTs from various polar orbiting satellites and ground observations: MODIS (aboard Terra), MISR (Terra), SeaWiFS (OrbView-2), MODIS (Aqua), and AERONET have been analyzed. In this manner, the present study attempts to minimize the influence of unrepresentative sampling in the trend analysis. Throughout terrestrial and marine regions, temporal increase of cloud-free AOTs were dominat over the globe (GL), northern (NH), and southern hemisphere (SH) (up to 0.00348±0.00185 for GL, 0.00514±0.00272 for NH, and 0.00232±0.00124 per year for SH). Generally, consistently in all observations, the weighted trends over Eastern US and OECD Europe showed a strong decreasing AOT (up to -0.00376±0.00174 for Eastern US and -0.00530±0.00304 per year for OECD Europe) attributed to the recent environmental legislation and resulting regulation of emissions. A significant increase was observed over Saharan/Arabian deserts, South, and East Asia (up to 0.00618±0.00326, 0.01452±0.00615, and 0.01939±0.00986 per year, respectively). These in part dramatic increases are caused by the enhanced amount of aerosol transported/emitted from industrialization, urbanization, deforestation, desertification, and climate change. Overall large/persistent cloud disturbance all year round and the limited/different sampling of polar orbiting satellites represent a challenge, which has been addressed successfully in this study for the accurate determination of aerosol amount and its trends

    Response to "Toward Unified Satellite Climatology of Aerosol Properties. 3. MODIS Versus MISR Versus AERONET"

    Get PDF
    A recent paper by Mishchenko et al. compares near-coincident MISR, MODIS, and AERONET aerosol optical depth (AOD) products, and reports much poorer agreement than that obtained by the instrument teams and others. We trace the reasons for the discrepancies primarily to differences in (1) the treatment of outliers, (2) the application of absolute vs. relative criteria for testing agreement, and (3) the ways in which seasonally varying spatial distributions of coincident retrievals are taken into account

    Validation of the GRAPE single view aerosol retrieval for ATSR-2 and insights into the long term global AOD trend over the ocean

    Get PDF
    The Global Retrieval of ATSR Cloud Parameters and Evaluation (GRAPE) project has produced a global data-set of cloud and aerosol properties from the Along Track Scanning Radiometer-2 (ATSR-2) instrument, covering the time period 1995Ăąïżœïżœ2001. This paper presents the validation of aerosol optical depths (AODs) over the ocean from this product against AERONET sun-photometer measurements, as well as a comparison to the Advanced Very High Resolution Radiometer (AVHRR) optical depth product produced by the Global Aerosol Climatology Project (GACP). The GRAPE AOD over ocean is found to be in good agreement with AERONET measurements, with a Pearson's correlation coefficient of 0.79 and a best-fit slope of 1.0±0.1, but with a positive bias of 0.08±0.04. Although the GRAPE and GACP datasets show reasonable agreement, there are significant differences. These discrepancies are explored, and suggest that the downward trend in AOD reported by GACP may arise from changes in sampling due to the orbital drift of the AVHRR instruments

    A Geostatistical Data Fusion Technique for Merging Remote Sensing and Ground-Based Observations of Aerosol Optical Thickness

    Get PDF
    Particles in the atmosphere reflect incoming sunlight, tending to cool the Earth below. Some particles, such as soot, also absorb sunlight, which tens to warm the ambient atmosphere. Aerosol optical depth (AOD) is a measure of the amount of particulate matter in the atmosphere, and is a key input to computer models that simulate and predict Earth's changing climate. The global AOD products from the Multi-angle Imaging SpectroRadiometer (MISR) and the MODerate resolution Imaging Spectroradiometer (MODIS), both of which fly on the NASA Earth Observing System's Terra satellite, provide complementary views of the particles in the atmosphere. Whereas MODIS offers global coverage about four times as frequent as MISR, the multi-angle data makes it possible to separate the surface and atmospheric contributions to the observed top-of-atmosphere radiances, and also to more effectively discriminate particle type. Surface-based AERONET sun photometers retrieve AOD with smaller uncertainties than the satellite instruments, but only at a few fixed locations. So there are clear reasons to combine these data sets in a way that takes advantage of their respective strengths. This paper represents an effort at combining MISR, MODIS and AERONET AOD products over the continental US, using a common spatial statistical technique called kriging. The technique uses the correlation between the satellite data and the "ground-truth" sun photometer observations to assign uncertainty to the satellite data on a region-by-region basis. The larger fraction of the sun photometer variance that is duplicated by the satellite data, the higher the confidence assigned to the satellite data in that region. In the Western and Central US, MISR AOD correlation with AERONET are significantly higher than those with MODIS, likely due to bright surfaces in these regions, which pose greater challenges for the single-view MODIS retrievals. In the east, MODIS correlations are higher, due to more frequent sampling of the varying AOD. These results demonstrate how the MISR and MODIS aerosol products are complementary. The underlying technique also provides one method for combining these products in such a way that takes advantage of the strengths of each, in the places and times when they are maximal, and in addition, yields an estimate of the associated uncertainties in space and time
    • 

    corecore