10 research outputs found

    S-NPP ATMS Instrument Prelaunch and On-Orbit Performance Evaluation

    Get PDF
    The first of a new generation of microwave sounders was launched aboard the Suomi-National Polar-Orbiting Partnership satellite in October 2011. The Advanced Technology Microwave Sounder (ATMS) combines the capabilities and channel sets of three predecessor sounders into a single package to provide information on the atmospheric vertical temperature and moisture profiles that are the most critical observations needed for numerical weather forecast models. Enhancements include size/mass/power approximately one third of the previous total, three new sounding channels, the first space-based, Nyquist-sampled cross-track microwave temperature soundings for improved fusion with infrared soundings, plus improved temperature control and reliability. This paper describes the ATMS characteristics versus its predecessor, the advanced microwave sounding unit (AMSU), and presents the first comprehensive evaluation of key prelaunch and on-orbit performance parameters. Two-year on-orbit performance shows that the ATMS has maintained very stable radiometric sensitivity, in agreement with prelaunch data, meeting requirements for all channels (with margins of ~40% for channels 1-15), and improvements over AMSU-A when processed for equivalent spatial resolution. The radiometric accuracy, determined by analysis from ground test measurements, and using on-orbit instrument temperatures, also shows large margins relative to requirements (specified as <1.0K for channels 1, 2, and 16-22 and <0.75 K for channels 3-15). A thorough evaluation of the performance of ATMS is especially important for this first proto-flight model unit of what will eventually be a series of ATMS sensors providing operational sounding capability for the U.S. and its international partners well into the next decade

    Radiometer Calibration Using Colocated GPS Radio Occultation Measurements

    Get PDF
    We present a new high-fidelity method of calibrating a cross-track scanning microwave radiometer using Global Positioning System (GPS) radio occultation (GPSRO) measurements. The radiometer and GPSRO receiver periodically observe the same volume of atmosphere near the Earth's limb, and these overlapping measurements are used to calibrate the radiometer. Performance analyses show that absolute calibration accuracy better than 0.25 K is achievable for temperature sounding channels in the 50-60-GHz band for a total-power radiometer using a weakly coupled noise diode for frequent calibration and proximal GPSRO measurements for infrequent (approximately daily) calibration. The method requires GPSRO penetration depth only down to the stratosphere, thus permitting the use of a relatively small GPS antenna. Furthermore, only coarse spacecraft angular knowledge (approximately one degree rms) is required for the technique, as more precise angular knowledge can be retrieved directly from the combined radiometer and GPSRO data, assuming that the radiometer angular sampling is uniform. These features make the technique particularly well suited for implementation on a low-cost CubeSat hosting both radiometer and GPSRO receiver systems on the same spacecraft. We describe a validation platform for this calibration method, the Microwave Radiometer Technology Acceleration (MiRaTA) CubeSat, currently in development for the National Aeronautics and Space Administration (NASA) Earth Science Technology Office. MiRaTA will fly a multiband radiometer and the Compact TEC/Atmosphere GPS Sensor in 2015.United States. Dept. of Defense. Assistant Secretary of Defense for Research & Engineering (United States. Air Force Contract FA8721-05-C-0002

    Radiometer Calibration Using Colocated GPS Radio Occultation Measurements

    Get PDF
    We present a new high-fidelity method of calibrating a cross-track scanning microwave radiometer using Global Positioning System (GPS) radio occultation (GPSRO) measurements. The radiometer and GPSRO receiver periodically observe the same volume of atmosphere near the Earth's limb, and these overlapping measurements are used to calibrate the radiometer. Performance analyses show that absolute calibration accuracy better than 0.25 K is achievable for temperature sounding channels in the 50-60-GHz band for a total-power radiometer using a weakly coupled noise diode for frequent calibration and proximal GPSRO measurements for infrequent (approximately daily) calibration. The method requires GPSRO penetration depth only down to the stratosphere, thus permitting the use of a relatively small GPS antenna. Furthermore, only coarse spacecraft angular knowledge (approximately one degree rms) is required for the technique, as more precise angular knowledge can be retrieved directly from the combined radiometer and GPSRO data, assuming that the radiometer angular sampling is uniform. These features make the technique particularly well suited for implementation on a low-cost CubeSat hosting both radiometer and GPSRO receiver systems on the same spacecraft. We describe a validation platform for this calibration method, the Microwave Radiometer Technology Acceleration (MiRaTA) CubeSat, currently in development for the National Aeronautics and Space Administration (NASA) Earth Science Technology Office. MiRaTA will fly a multiband radiometer and the Compact TEC/Atmosphere GPS Sensor in 2015

    Characterization of geolocation accuracy of Suomi NPP Advanced Technology Microwave Sounder measurements

    Get PDF
    The Advanced Technology Microwave Sounder (ATMS) onboard Suomi National Polar-orbiting Partnership satellite has 22 channels at frequencies ranging from 23 to 183 GHz for probing the atmospheric temperature and moisture under all weather conditions. As part of the ATMS calibration and validation activities, the geolocation accuracy of ATMS data must be well characterized and documented. In this study, the coastline crossing method (CCM) and the land-sea fraction method (LFM) are utilized to characterize and quantify the ATMS geolocation accuracy. The CCM is based on the inflection points of the ATMS window channel measurements across the coastlines, whereas the LFM collocates the ATMS window channel data with high-resolution land-sea mask data sets. Since the ATMS measurements provide five pairs of latitude and longitude data for K, Ka, V, W, and G bands, respectively, the window channels 1, 2, 3, 16, and 17 from each of these five bands are chosen for assessing the overall geolocation accuracy. ATMS geolocation errors estimated from both methods are generally consistent from 40 cases in June 2014. The ATMS along-Track (cross-Track) errors at nadir are within ±4.2 km (±1.2 km) for K/Ka, ±2.6 km (±2.7 km) for V bands, and ±1.2 km (±0.6 km) at W and G bands, respectively. At the W band, the geolocation errors derived from both algorithms are probably less reliable due to a reduced contrast of brightness temperatures in coastal areas. These estimated ATMS along-Track and cross-Track geolocation errors are well within the uncertainty requirements for all bands. © 2016. American Geophysical Union. All Rights Reserved

    Assessment of Radiometer Calibration With GPS Radio Occultation for the MiRaTA CubeSat Mission

    Get PDF
    The microwave radiometer technology acceleration (MiRaTA) is a 3U CubeSat mission sponsored by the NASA Earth Science Technology Office. The science payload on MiRaTA consists of a triband microwave radiometer and global positioning system (GPS) radio occultation (GPSRO) sensor. The microwave radiometer takes measurements of all-weather temperature (V-band, 50-57 GHz), water vapor (G-band, 175-191 GHz), and cloud ice (G-band, 205 GHz) to provide observations used to improve weather forecasting. The Aerospace Corporation's GPSRO experiment, called the compact total electron content and atmospheric GPS sensor (CTAGS), measures profiles of temperature and pressure in the upper troposphere/lower stratosphere (~20 km) and electron density in the ionosphere (over 100 km). The MiRaTA mission will validate new technologies in both passive microwave radiometry and GPSRO: 1) new ultracompact and low-power technology for multichannel and multiband passive microwave radiometers, 2) the application of a commercial off-the-shelf GPS receiver and custom patch antenna array technology to obtain neutral atmospheric GPSRO retrieval from a nanosatellite, and 3) a new approach to space-borne microwave radiometer calibration using adjacent GPSRO measurements. In this paper, we focus on objective 3, developing operational models to meet a mission goal of 100 concurrent radiometer and GPSRO measurements, and estimating the temperature measurement precision for the CTAGS instrument based on thermal noise Based on an analysis of thermal noise of the CTAGS instrument, the expected temperature retrieval precision is between 0.17 and 1.4 K, which supports the improvement of radiometric calibration to 0.25 K

    The Moon as a photometric calibration standard for microwave sensors

    Get PDF

    CIRA annual report FY 2016/2017

    Get PDF
    Reporting period April 1, 2016-March 31, 2017

    Inter-channel uniformity of a microwave sounder in space

    Get PDF
    We analyzed intrusions of the Moon in the deep space view of the Advanced Microwave Sounding Unit-B on the NOAA-16 satellite and found no significant discrepancies in the signals from the different sounding channels between 2001 and 2008. However, earlier investigations had detected biases of up to 10 K, by using simultaneous nadir overpasses of NOAA-16 with other satellites. These discrepancies in the observations of Earth scenes cannot be due to non-linearity of the receiver or contamination of the deep space view without affecting the signal from the Moon as well. As neither major anomalies of the on-board calibration target nor the local oscillator were present, we consider radio frequency interference in combination with a strongly decreasing gain the most obvious reason for the degrading photometric stability. By means of the chosen example we demonstrate the usefulness of the Moon for investigations of the performance of microwave sounders in flight.</p

    Validation of ATMS Calibration Accuracy Using Suomi NPP Pitch Maneuver Observations

    No full text
    The Suomi National Polar-orbiting Partnership (SNPP) satellite was launched on 28 October, 2011, and carries the Advanced Technology Microwave Sounder (ATMS) onboard. Currently, ATMS performance in orbit is very stable and the calibration parameters (e.g., noise and accuracy) meet specifications. This study documents an ATMS calibration error budget model and its results for community reference. The calibration accuracy is also verified with the ATMS pitch maneuver observations of cold space. It is shown that the ATMS pitch maneuver cold space observations at center positions are inconsistent with the values predicted by the instrument calibration error budget model. The biases also depend on scan angle. This scan-angle dependence may be caused by the ATMS plane reflector emission. Thus, a physical model is developed to simulate the radiation emitted from the reflector and is recommended as part of ATMS radiance calibration to further improve the sensor data record (SDR) data quality
    corecore