1,742 research outputs found

    What Am I Testing and Where? Comparing Testing Procedures based on Lightweight Requirements Annotations

    Get PDF
    [Context] The testing of software-intensive systems is performed in different test stages each having a large number of test cases. These test cases are commonly derived from requirements. Each test stages exhibits specific demands and constraints with respect to their degree of detail and what can be tested. Therefore, specific test suites are defined for each test stage. In this paper, the focus is on the domain of embedded systems, where, among others, typical test stages are Software- and Hardware-in-the-loop. [Objective] Monitoring and controlling which requirements are verified in which detail and in which test stage is a challenge for engineers. However, this information is necessary to assure a certain test coverage, to minimize redundant testing procedures, and to avoid inconsistencies between test stages. In addition, engineers are reluctant to state their requirements in terms of structured languages or models that would facilitate the relation of requirements to test executions. [Method] With our approach, we close the gap between requirements specifications and test executions. Previously, we have proposed a lightweight markup language for requirements which provides a set of annotations that can be applied to natural language requirements. The annotations are mapped to events and signals in test executions. As a result, meaningful insights from a set of test executions can be directly related to artifacts in the requirements specification. In this paper, we use the markup language to compare different test stages with one another. [Results] We annotate 443 natural language requirements of a driver assistance system with the means of our lightweight markup language. The annotations are then linked to 1300 test executions from a simulation environment and 53 test executions from test drives with human drivers. Based on the annotations, we are able to analyze how similar the test stages are and how well test stages and test cases are aligned with the requirements. Further, we highlight the general applicability of our approach through this extensive experimental evaluation. [Conclusion] With our approach, the results of several test levels are linked to the requirements and enable the evaluation of complex test executions. By this means, practitioners can easily evaluate how well a systems performs with regards to its specification and, additionally, can reason about the expressiveness of the applied test stage.TU Berlin, Open-Access-Mittel - 202

    Validation of Soft Classification Models using Partial Class Memberships: An Extended Concept of Sensitivity & Co. applied to the Grading of Astrocytoma Tissues

    Full text link
    We use partial class memberships in soft classification to model uncertain labelling and mixtures of classes. Partial class memberships are not restricted to predictions, but may also occur in reference labels (ground truth, gold standard diagnosis) for training and validation data. Classifier performance is usually expressed as fractions of the confusion matrix, such as sensitivity, specificity, negative and positive predictive values. We extend this concept to soft classification and discuss the bias and variance properties of the extended performance measures. Ambiguity in reference labels translates to differences between best-case, expected and worst-case performance. We show a second set of measures comparing expected and ideal performance which is closely related to regression performance, namely the root mean squared error RMSE and the mean absolute error MAE. All calculations apply to classical crisp classification as well as to soft classification (partial class memberships and/or one-class classifiers). The proposed performance measures allow to test classifiers with actual borderline cases. In addition, hardening of e.g. posterior probabilities into class labels is not necessary, avoiding the corresponding information loss and increase in variance. We implement the proposed performance measures in the R package "softclassval", which is available from CRAN and at http://softclassval.r-forge.r-project.org. Our reasoning as well as the importance of partial memberships for chemometric classification is illustrated by a real-word application: astrocytoma brain tumor tissue grading (80 patients, 37000 spectra) for finding surgical excision borders. As borderline cases are the actual target of the analytical technique, samples which are diagnosed to be borderline cases must be included in the validation.Comment: The manuscript is accepted for publication in Chemometrics and Intelligent Laboratory Systems. Supplementary figures and tables are at the end of the pd

    Towards Odor-Sensitive Mobile Robots

    Get PDF
    J. Monroy, J. Gonzalez-Jimenez, "Towards Odor-Sensitive Mobile Robots", Electronic Nose Technologies and Advances in Machine Olfaction, IGI Global, pp. 244--263, 2018, doi:10.4018/978-1-5225-3862-2.ch012 Versión preprint, con permiso del editorOut of all the components of a mobile robot, its sensorial system is undoubtedly among the most critical ones when operating in real environments. Until now, these sensorial systems mostly relied on range sensors (laser scanner, sonar, active triangulation) and cameras. While electronic noses have barely been employed, they can provide a complementary sensory information, vital for some applications, as with humans. This chapter analyzes the motivation of providing a robot with gas-sensing capabilities and also reviews some of the hurdles that are preventing smell from achieving the importance of other sensing modalities in robotics. The achievements made so far are reviewed to illustrate the current status on the three main fields within robotics olfaction: the classification of volatile substances, the spatial estimation of the gas dispersion from sparse measurements, and the localization of the gas source within a known environment

    Dependability for declarative mechanisms: neural networks in autonomous vehicles decision making.

    Get PDF
    Despite being introduced in 1958, neural networks appeared in numerous applications of different fields in the last decade. This change was possible thanks to the reduced costs of computing power required for deep neural networks, and increasing available data that provide examples for training sets. The 2012 ImageNet image classification competition is often used as a example to describe how neural networks became at this time good candidates for applications: during this competition a neural network based solution won for the first time. In the following editions, all winning solutions were based on neural networks. Since then, neural networks have shown great results in several non critical applications (image recognition, sound recognition, text analysis, etc...). There is a growing interest to use them in critical applications as their ability to generalize makes them good candidates for applications such as autonomous vehicles, but standards do not allow that yet. Autonomous driving functions are currently researched by the industry with the final objective of producing in the near future fully autonomous vehicles, as defined by the fifth level of the SAE international (Society of Automotive Engineers) classification. Autonomous driving process is usually decomposed into four different parts: the where sensors get information from the environment, the where the data from the different sensors is merged into one representation of the environment, the that uses the representation of the environment to decide what should be the vehicles behavior and the commands to send to the actuators and finally the part that implements these commands. In this thesis, following the interest of the company Stellantis, we will focus on the decision part of this process, considering neural network based solution. Automotive being a safety critical application, it is required to implement and ensure the dependability of the systems, and this is why neural networks use is not allowed at the moment: their lack of safety forbid their use in such applications. Dependability methods for classical software systems are well known, but neural networks do not have yet similar dependable mechanisms to guarantee their trust. This problem is due to several reasons, among them the difficulty to test applications with a quasi-infinite operational domain and whose functions are hard to define exhaustively in the specifications. Here we can find the motivation of this thesis: how can we ensure the dependability of neural networks in the context of decision for autonomous vehicles? Research is now being conducted on the topic of dependability and safety of neural networks with several approaches being considered and our research is motivated by the great potential in safety critical applications mentioned above. In this thesis, we will focus on one category of method that seems to be a good candidate to ensure the dependability of neural networks by solving some of the problems of testing: the formal verification for neural networks. These methods aim to prove that a neural network respects a safety property on an entire range of its input and output domains. Formal verification is already used in other domains and is seen as a trusted method to give confidence in a system, but it remains for the moment a research topic for neural networks with currently no industrial applications. The main contributions of this thesis are the following: a proposal of a characterization of neural network from a software development perspective, and a corresponding classification of their faults, errors and failures, the identification of a potential threat to the use of formal verification. This threat is the erroneous neural network model problem, that may lead to trust a formally validated safety property that does not hold in real life, the realization of an experiment that implements a formal verification for neural networks in an autonomous driving application that is to the best of our knowledge the closest to industrial use. For this application, we chose to work with an ACC (Adaptive Cruise Control) function, which is an autonomous driving function that performs the longitudinal control of a vehicle. The experiment is conducted with the use of a simulator and a neural network formal verification tool. The other contributions of the thesis are the following: theoretical example of the erroneous neural network model problem and a practical example in our autonomous driving experiment, a proposal of detection and recovery mechanisms as a solution to the erroneous model problem mentioned above, an implementation of these detection and recovery mechanisms in our autonomous driving experiment and a discussion about difficulties and possible processes for the implementation of formal verification for neural networks that we developed during our experiments

    ImageNet Large Scale Visual Recognition Challenge

    Get PDF
    The ImageNet Large Scale Visual Recognition Challenge is a benchmark in object category classification and detection on hundreds of object categories and millions of images. The challenge has been run annually from 2010 to present, attracting participation from more than fifty institutions. This paper describes the creation of this benchmark dataset and the advances in object recognition that have been possible as a result. We discuss the challenges of collecting large-scale ground truth annotation, highlight key breakthroughs in categorical object recognition, provide a detailed analysis of the current state of the field of large-scale image classification and object detection, and compare the state-of-the-art computer vision accuracy with human accuracy. We conclude with lessons learned in the five years of the challenge, and propose future directions and improvements.Comment: 43 pages, 16 figures. v3 includes additional comparisons with PASCAL VOC (per-category comparisons in Table 3, distribution of localization difficulty in Fig 16), a list of queries used for obtaining object detection images (Appendix C), and some additional reference

    A computational academic integrity framework

    Get PDF
    L'abast creixent i la naturalesa canviant dels programes acadèmics constitueixen un repte per a la integritat dels protocols tradicionals de proves i exàmens. L'objectiu d¿aquesta tesi és introduir una alternativa als enfocaments tradicionals d'integritat acadèmica, per a cobrir la bretxa del buit de l'anonimat i donar la possibilitat als instructors i administradors acadèmics de fer servir nous mitjans que permetin mantenir la integritat acadèmica i promoguin la responsabilitat, accessibilitat i eficiència, a més de preservar la privadesa i minimitzin la interrupció en el procés d'aprenentatge. Aquest treball té com a objectiu començar un canvi de paradigma en les pràctiques d'integritat acadèmica. La recerca en l'àrea de la identitat de l'estudiant i la garantia de l'autoria són importants perquè la concessió de crèdits d'estudi a entitats no verificades és perjudicial per a la credibilitat institucional i la seguretat pública. Aquesta tesi es basa en la noció que la identitat de l'alumne es compon de dues capes diferents, física i de comportament, en les quals tant els criteris d'identitat com els d'autoria han de ser confirmats per a mantenir un nivell raonable d'integritat acadèmica. Per a això, aquesta tesi s'organitza en tres seccions, cadascuna de les quals aborda el problema des d'una de les perspectives següents: (a) teòrica, (b) empírica i (c) pragmàtica.El creciente alcance y la naturaleza cambiante de los programas académicos constituyen un reto para la integridad de los protocolos tradicionales de pruebas y exámenes. El objetivo de esta tesis es introducir una alternativa a los enfoques tradicionales de integridad académica, para cubrir la brecha del vacío anonimato y dar la posibilidad a los instructores y administradores académicos de usar nuevos medios que permitan mantener la integridad académica y promuevan la responsabilidad, accesibilidad y eficiencia, además de preservar la privacidad y minimizar la interrupción en el proceso de aprendizaje. Este trabajo tiene como objetivo iniciar un cambio de paradigma en las prácticas de integridad académica. La investigación en el área de la identidad del estudiante y la garantía de la autoría son importantes porque la concesión de créditos de estudio a entidades no verificadas es perjudicial para la credibilidad institucional y la seguridad pública. Esta tesis se basa en la noción de que la identidad del alumno se compone de dos capas distintas, física y de comportamiento, en las que tanto los criterios de identidad como los de autoría deben ser confirmados para mantener un nivel razonable de integridad académica. Para ello, esta tesis se organiza en tres secciones, cada una de las cuales aborda el problema desde una de las siguientes perspectivas: (a) teórica, (b) empírica y (c) pragmática.The growing scope and changing nature of academic programmes provide a challenge to the integrity of traditional testing and examination protocols. The aim of this thesis is to introduce an alternative to the traditional approaches to academic integrity, bridging the anonymity gap and empowering instructors and academic administrators with new ways of maintaining academic integrity that preserve privacy, minimize disruption to the learning process, and promote accountability, accessibility and efficiency. This work aims to initiate a paradigm shift in academic integrity practices. Research in the area of learner identity and authorship assurance is important because the award of course credits to unverified entities is detrimental to institutional credibility and public safety. This thesis builds upon the notion of learner identity consisting of two distinct layers (a physical layer and a behavioural layer), where the criteria of identity and authorship must both be confirmed to maintain a reasonable level of academic integrity. To pursue this goal in organized fashion, this thesis has the following three sections: (a) theoretical, (b) empirical, and (c) pragmatic

    A Computational Academic Integrity Framework

    Get PDF
    L'abast creixent i la naturalesa canviant dels programes acadèmics constitueixen un repte per a la integritat dels protocols tradicionals de proves i exàmens. L'objectiu d'aquesta tesi és introduir una alternativa als enfocaments tradicionals d'integritat acadèmica, per a cobrir la bretxa del buit de l'anonimat i donar la possibilitat als instructors i administradors acadèmics de fer servir nous mitjans que permetin mantenir la integritat acadèmica i promoguin la responsabilitat, accessibilitat i eficiència, a més de preservar la privadesa i minimitzin la interrupció en el procés d'aprenentatge. Aquest treball té com a objectiu començar un canvi de paradigma en les pràctiques d'integritat acadèmica. La recerca en l'àrea de la identitat de l'estudiant i la garantia de l'autoria són importants perquè la concessió de crèdits d'estudi a entitats no verificades és perjudicial per a la credibilitat institucional i la seguretat pública. Aquesta tesi es basa en la noció que la identitat de l'alumne es compon de dues capes diferents, física i de comportament, en les quals tant els criteris d'identitat com els d'autoria han de ser confirmats per a mantenir un nivell raonable d'integritat acadèmica. Per a això, aquesta tesi s'organitza en tres seccions, cadascuna de les quals aborda el problema des d'una de les perspectives següents: (a) teòrica, (b) empírica i (c) pragmàtica.El creciente alcance y la naturaleza cambiante de los programas académicos constituyen un reto para la integridad de los protocolos tradicionales de pruebas y exámenes. El objetivo de esta tesis es introducir una alternativa a los enfoques tradicionales de integridad académica, para cubrir la brecha del vacío anonimato y dar la posibilidad a los instructores y administradores académicos de usar nuevos medios que permitan mantener la integridad académica y promuevan la responsabilidad, accesibilidad y eficiencia, además de preservar la privacidad y minimizar la interrupción en el proceso de aprendizaje. Este trabajo tiene como objetivo iniciar un cambio de paradigma en las prácticas de integridad académica. La investigación en el área de la identidad del estudiante y la garantía de la autoría son importantes porque la concesión de créditos de estudio a entidades no verificadas es perjudicial para la credibilidad institucional y la seguridad pública. Esta tesis se basa en la noción de que la identidad del alumno se compone de dos capas distintas, física y de comportamiento, en las que tanto los criterios de identidad como los de autoría deben ser confirmados para mantener un nivel razonable de integridad académica. Para ello, esta tesis se organiza en tres secciones, cada una de las cuales aborda el problema desde una de las siguientes perspectivas: (a) teórica, (b) empírica y (c) pragmática.The growing scope and changing nature of academic programmes provide a challenge to the integrity of traditional testing and examination protocols. The aim of this thesis is to introduce an alternative to the traditional approaches to academic integrity, bridging the anonymity gap and empowering instructors and academic administrators with new ways of maintaining academic integrity that preserve privacy, minimize disruption to the learning process, and promote accountability, accessibility and efficiency. This work aims to initiate a paradigm shift in academic integrity practices. Research in the area of learner identity and authorship assurance is important because the award of course credits to unverified entities is detrimental to institutional credibility and public safety. This thesis builds upon the notion of learner identity consisting of two distinct layers (a physical layer and a behavioural layer), where the criteria of identity and authorship must both be confirmed to maintain a reasonable level of academic integrity. To pursue this goal in organized fashion, this thesis has the following three sections: (a) theoretical, (b) empirical, and (c) pragmatic

    Investigating biocomplexity through the agent-based paradigm.

    Get PDF
    Capturing the dynamism that pervades biological systems requires a computational approach that can accommodate both the continuous features of the system environment as well as the flexible and heterogeneous nature of component interactions. This presents a serious challenge for the more traditional mathematical approaches that assume component homogeneity to relate system observables using mathematical equations. While the homogeneity condition does not lead to loss of accuracy while simulating various continua, it fails to offer detailed solutions when applied to systems with dynamically interacting heterogeneous components. As the functionality and architecture of most biological systems is a product of multi-faceted individual interactions at the sub-system level, continuum models rarely offer much beyond qualitative similarity. Agent-based modelling is a class of algorithmic computational approaches that rely on interactions between Turing-complete finite-state machines--or agents--to simulate, from the bottom-up, macroscopic properties of a system. In recognizing the heterogeneity condition, they offer suitable ontologies to the system components being modelled, thereby succeeding where their continuum counterparts tend to struggle. Furthermore, being inherently hierarchical, they are quite amenable to coupling with other computational paradigms. The integration of any agent-based framework with continuum models is arguably the most elegant and precise way of representing biological systems. Although in its nascence, agent-based modelling has been utilized to model biological complexity across a broad range of biological scales (from cells to societies). In this article, we explore the reasons that make agent-based modelling the most precise approach to model biological systems that tend to be non-linear and complex

    Responsible and Regulatory Conform Machine Learning for Medicine: A Survey of Challenges and Solutions

    Full text link
    Machine learning is expected to fuel significant improvements in medical care. To ensure that fundamental principles such as beneficence, respect for human autonomy, prevention of harm, justice, privacy, and transparency are respected, medical machine learning systems must be developed responsibly. Many high-level declarations of ethical principles have been put forth for this purpose, but there is a severe lack of technical guidelines explicating the practical consequences for medical machine learning. Similarly, there is currently considerable uncertainty regarding the exact regulatory requirements placed upon medical machine learning systems. This survey provides an overview of the technical and procedural challenges involved in creating medical machine learning systems responsibly and in conformity with existing regulations, as well as possible solutions to address these challenges. First, a brief review of existing regulations affecting medical machine learning is provided, showing that properties such as safety, robustness, reliability, privacy, security, transparency, explainability, and nondiscrimination are all demanded already by existing law and regulations - albeit, in many cases, to an uncertain degree. Next, the key technical obstacles to achieving these desirable properties are discussed, as well as important techniques to overcome these obstacles in the medical context. We notice that distribution shift, spurious correlations, model underspecification, uncertainty quantification, and data scarcity represent severe challenges in the medical context. Promising solution approaches include the use of large and representative datasets and federated learning as a means to that end, the careful exploitation of domain knowledge, the use of inherently transparent models, comprehensive out-of-distribution model testing and verification, as well as algorithmic impact assessments
    • …
    corecore