3,121 research outputs found

    Musculoskeletal modelling to analyse and treat anterior cruciate ligament deficiency

    Get PDF
    Anterior cruciate ligament (ACL) deficiency results in knee instability that includes an increase in internal tibial rotation and anterior tibial translation (ATT) as ACL is the primary restraint to anterior shear and internal rotation. Clinically, ACL deficient (ACLD) patients undergo surgery or/and rehabilitation programmes depending on their ability to cope or otherwise. However, the ACL reconstructed (ACLR) knees may still have residual instability in ATT and tibial internal rotation. Functional electrical stimulation (FES) has been used in conventional physiotherapy for ACL deficiency, including strengthening the muscles around the knee. The rehabilitation treatment focuses on strengthening the quadriceps muscle because it gets weakened after ACL injury or ACL reconstruction. However, stimulating the hamstrings, especially the biceps femoris long head (BFLH) with its insertion on the fibular head is a candidate to reduce the knee instability of ACLD and ACLR by applying a posterior pull and external rotation to the tibia. This thesis proposes that knee instability in ACLD subjects can be reduced by stimulating the BFLH muscle with FES. Here, a musculoskeletal modelling approach was used to simulate the function of FES. A new optimisation method was developed which allowed the inclusion of FES. There are three main studies present in this thesis. First, a pilot study was conducted in which healthy control subjects walked with and without FES of BFLH. It was found that selective activation of the BFLH can reduce the anterior tibial shear and tibial internal rotation torque at the knee in healthy subjects. Second, a validation study for the algorithm used in the musculoskeletal model was conducted in which the effect of FES stimulation of the BFLH on gluteus maximus activations was tested using electromyography (EMG). This study concluded that there were statistical correlations between peak and impulse of gluteus maximus activation between FES activation level and muscle activity of gluteus maximus as quantified by both EMG and the musculoskeletal model. In the final study, the validated model was used to compare the internal rotation torque, anterior shear force, speed and gluteus medius and gluteus maximus muscle activation between control, ACLD and ACLR groups during stance phase with and without FES stimulated on BFLH. This study found that the activation of BFLH with FES during stance phase was able to reduce the knee instability of the patient groups and triggered the compensatory mechanism for each patient group to react differently. Therefore, besides quadriceps, the rehabilitation treatment should focus on appropriate timed activation of the BFLH to improve the quality of life of patients.Open Acces

    Validation of an electrogoniometry system as a measure of knee kinematics during activities of daily living

    Get PDF
    Purpose: The increasing use of electrogoniometry (ELG) in clinical research requires the validation of different instrumentation. The purpose of this investigation was to examine the concurrent validity of an ELG system during activities of daily living. Methods: Ten asymptomatic participants gave informed consent to participate. A Biometrics SG150 electrogoniometer was directly compared to a 12 camera three dimensional motion analysis system during walking, stair ascent, stair descent, sit to stand, and stand to sit activities for the measurement of the right knee angle. Analysis of validity was undertaken by linear regression. Standard error of estimate (SEE), standardised SEE (SSEE), and Pearson’s correlation coefficient r were computed for paired trials between systems for each functional activity. Results: The 95% confidence interval of SEE was reasonable between systems across walking (LCI = 2.43 °; UCI = 2.91 °), stair ascent (LCI = 2.09 °; UCI = 2.42 °), stair descent (LCI = 1.79 °; UCI = 2.10 °), sit to stand (LCI = 1.22 °; UCI = 1.41 °), and stand to sit (LCI = 1.17 °; UCI = 1.34 °). Pearson’s correlation coefficient r across walking (LCI = 0.983; UCI = 0.990), stair ascent (LCI = 0.995; UCI = 0.997), stair descent (LCI = 0.995; UCI = 0.997), sit to stand (LCI = 0.998; UCI = 0.999), and stand to sit (LCI = 0.996; UCI = 0.997) was indicative of a strong linear relationship between systems. Conclusion: ELG is a valid method of measuring the knee angle during activities representative of daily living. The range is within that suggested to be acceptable for the clinical evaluation of patients with musculoskeletal conditions

    Extra excitation of biceps femoris during neuromuscular electrical stimulation reduces knee medial loading

    Get PDF
    Medial knee joint osteoarthritis (OA) is a debilitating and prevalent condition. Surgical treatment consists of redistributing the forces from the medial to the lateral compartment through osteotomy, or replacing the joint surfaces. As the mediolateral load distribution is related to the action of the musculature around the knee, the aim of this study was to devise a technique to redistribute these forces non-surgically through changes in muscle excitation. Eight healthy subjects participated in the experiment, and neuromuscular electrical stimulation was used to change the muscle forces around the knee. A musculoskeletal model was used to quantify the loading on the medial compartment of the knee, and a novel algorithm devised and implemented to simulate neuromuscular electrical stimulation. The forces and moments at the knee, ground reaction forces, walking velocity and step length were quantified before and after stimulation. Stimulation of the biceps femoris resulted in a significant decrease in the second peak of the medial knee joint loading by up to 0.17 body weight (p = 0.016). Kinematic parameters were not significantly affected. Neuromuscular electrical stimulation can decrease the peak loads on the medial compartment of the knee, and thus offers a promising therapy for medial knee joint OA

    Framework of Lower-Limb Musculoskeletal Modeling for FES Control System Development

    Get PDF
    In recent years, the demand of interest in functional electrical stimulation (FES) is increasing due to the applications especially on spinal cord injury (SCI) patients. Numerous studies have been done to regain mobility function and for health benefits especially due to FES control development for the paralyzed person. In this paper, the existing general framework modeling methods have been reviewed and the new modeling framework approach has been discussed. In general modeling and simulation can greatly facilitate to test and tune various FES control strategies. In fact, the modeling of musculoskeletal properties in people with SCI is significantly challenging for researchers due to the complexity of the system. The complexities are due to the complex structural anatomy, complicated movement and dynamics, as well as indeterminate muscle function. Although there are some models have been developed, the complexities of the system resulting mathematical representation that have a large number of parameters which make the model identification process even more difficult. Therefore, a new approach of modeling has been presented which is comparatively less burdened compared with mathematical representations. Hence this musculoskeletal model can be used for FES control system development

    An exploration of the experiences and utility of functional electrical stimulation for foot drop in people with multiple sclerosis

    Get PDF
    Purpose: Functional electrical stimulation (FES) is effective in improving walking in people with multiple sclerosis (MS) with foot drop. There is limited research exploring people’s experiences of using this device. This study aims to explore the utility, efficacy, acceptability, and impact on daily life of the device in people with MS. Methods: An interpretative phenomenological approach was employed. Ten participants who had used FES for 12 months were interviewed. Transcripts were analysed, and emergent themes identified. Results: Nine participants continued to use the device. Three relevant super-ordinate themes were identified; impact of functional electrical stimulation, sticking with functional electrical stimulation, and autonomy and control. Participants reported challenges using the device; however, all reported positive physical and psychological benefits. Intrinsic and external influences such as; access to professional help, the influence of others, an individual’s ability to adapt, and experiences using the device, influenced their decisions to continue with the device. A thematic model of these factors was developed. Conclusions: This study has contributed to our understanding of people with MS experiences of using the device and will help inform prescribing decisions and support the continued, appropriate use of FES over the longer term

    Functional electrical stimulation of gluteus medius reduces the medial joint reaction force of the knee during level walking

    Get PDF
    Background: By altering muscular activation patterns, internal forces acting on the human body during dynamic activity may be manipulated. The magnitude of one of these forces, the medial knee joint reaction force (JRF), is associated with disease progression in patients with early osteoarthritis (OA), suggesting utility in its targeted reduction. Increased activation of gluteus medius has been suggested as a means to achieve this. Methods: Motion capture equipment and forceplate transducers were used to obtain kinematic and kinetic data for 15 healthy subjects during level walking, with and without the application of functional electrical stimulation (FES) to gluteus medius. Musculoskeletal modelling was employed to determine the medial knee JRF during stance phase for each trial. A further computer simulation of increased gluteus medius activation was performed using data from normal walking trials by a manipulation of modelling parameters. Relationships between changes in the medial knee JRF, kinematics and ground reaction force were evaluated. Results: In simulations of increased gluteus medius activity, the total impulse of the medial knee JRF was reduced by 4.2% (p=0.003) compared to control. With real-world application of FES to the muscle, the magnitude of this reduction increased to 12.5% (p<0.001), with significant inter-subject variation. Across subjects, the magnitude of reduction correlated strongly with kinematic (p<0.001) and kinetic (p<0.001) correlates of gluteus medius activity. Conclusions: The results support a major role for gluteus medius in the protection of the knee for patients with OA, establishing the muscle’s central importance to effective therapeutic regimes. FES may be used to achieve increased activation in order to mitigate distal internal loads, and much of the benefit of this increase can be attributed to resulting changes in kinematic parameters and the ground reaction force. The utility of interventions targeting gluteus medius can be assessed in a relatively straightforward way by determination of the magnitude of reduction in pelvic drop, an easily accessed marker of aberrant loading at the knee

    Quantifying Performance of Bipedal Standing with Multi-channel EMG

    Full text link
    Spinal cord stimulation has enabled humans with motor complete spinal cord injury (SCI) to independently stand and recover some lost autonomic function. Quantifying the quality of bipedal standing under spinal stimulation is important for spinal rehabilitation therapies and for new strategies that seek to combine spinal stimulation and rehabilitative robots (such as exoskeletons) in real time feedback. To study the potential for automated electromyography (EMG) analysis in SCI, we evaluated the standing quality of paralyzed patients undergoing electrical spinal cord stimulation using both video and multi-channel surface EMG recordings during spinal stimulation therapy sessions. The quality of standing under different stimulation settings was quantified manually by experienced clinicians. By correlating features of the recorded EMG activity with the expert evaluations, we show that multi-channel EMG recording can provide accurate, fast, and robust estimation for the quality of bipedal standing in spinally stimulated SCI patients. Moreover, our analysis shows that the total number of EMG channels needed to effectively predict standing quality can be reduced while maintaining high estimation accuracy, which provides more flexibility for rehabilitation robotic systems to incorporate EMG recordings
    • …
    corecore