735 research outputs found

    Drone Base Station Trajectory Management for Optimal Scheduling in LTE-Based Sparse Delay-Sensitive M2M Networks

    Get PDF
    Providing connectivity in areas out of reach of the cellular infrastructure is a very active area of research. This connectivity is particularly needed in case of the deployment of machine type communication devices (MTCDs) for critical purposes such as homeland security. In such applications, MTCDs are deployed in areas that are hard to reach using regular communications infrastructure while the collected data is timely critical. Drone-supported communications constitute a new trend in complementing the reach of the terrestrial communication infrastructure. In this study, drones are used as base stations to provide real-time communication services to gather critical data out of a group of MTCDs that are sparsely deployed in a marine environment. Studying different communication technologies as LTE, WiFi, LPWAN and Free-Space Optical communication (FSOC) incorporated with the drone communications was important in the first phase of this research to identify the best candidate for addressing this need. We have determined the cellular technology, and particularly LTE, to be the most suitable candidate to support such applications. In this case, an LTE base station would be mounted on the drone which will help communicate with the different MTCDs to transmit their data to the network backhaul. We then formulate the problem model mathematically and devise the trajectory planning and scheduling algorithm that decides the drone path and the resulting scheduling. Based on this formulation, we decided to compare between an Ant Colony Optimization (ACO) based technique that optimizes the drone movement among the sparsely-deployed MTCDs and a Genetic Algorithm (GA) based solution that achieves the same purpose. This optimization is based on minimizing the energy cost of the drone movement while ensuring the data transmission deadline missing is minimized. We present the results of several simulation experiments that validate the different performance aspects of the technique

    Impact of drone route geometry on information collection in wireless sensor networks

    Get PDF
    The recent technological evolution of drones along with the constantly growing maturity of its commercialization, has led to the emergence of novel drone-based applications within the field of wireless sensor networks for information collection purposes. In such settings, especially when deployed in outdoor environments with limited external control, energy consumption and robustness are challenging problems for the system’s operation. In the present paper, a drone-assisted wireless sensor network is studied, the aim being to coordinate the routing of information (among the ground nodes and its propagation to the drone), investigating several drone trajectories or route shapes and examining their impact on information collection (the aim being to minimize transmissions and consequently, energy consumption). The main contribution lies on the proposed algorithms that coordinate the communication between (terrestrial) sensor nodes and the drone that may follow different route shapes. It is shown through simulations using soft random geometric graphs that the number of transmitted messages for each drone route shape depends on the rotational symmetry around the center of each shape. An interesting result is that the higher the order of symmetry, the lower the number of transmitted messages for data collection. Contrary, for those cases that the order of symmetry is the same, even for different route shapes, similar number of messages is transmitted. In addition to the simulation results, an experimental demonstration, using spatial data from grit bin locations, further validates the proposed solution under real-world conditions, demonstrating the applicability of the proposed approach.publishedVersio

    Smooth Coverage Path Planning for UAVs with Model Predictive Control Trajectory Tracking

    Get PDF
    Within the Industry 4.0 ecosystem, Inspection Robotics is one fundamental technology to speed up monitoring processes and obtain good accuracy and performance of the inspections while avoiding possible safety issues for human personnel. This manuscript investigates the robotics inspection of areas and surfaces employing Unmanned Aerial Vehicles (UAVs). The contribution starts by addressing the problem of coverage path planning and proposes a smoothing approach intended to reduce both flight time and memory consumption to store the target navigation path. Evaluation tests are conducted on a quadrotor equipped with a Model Predictive Control (MPC) policy and a Simultaneous Localization and Mapping (SLAM) algorithm to localize the UAV in the environment

    Uav-assisted data collection in wireless sensor networks: A comprehensive survey

    Get PDF
    Wireless sensor networks (WSNs) are usually deployed to different areas of interest to sense phenomena, process sensed data, and take actions accordingly. The networks are integrated with many advanced technologies to be able to fulfill their tasks that is becoming more and more complicated. These networks tend to connect to multimedia networks and to process huge data over long distances. Due to the limited resources of static sensor nodes, WSNs need to cooperate with mobile robots such as unmanned ground vehicles (UGVs), or unmanned aerial vehicles (UAVs) in their developments. The mobile devices show their maneuverability, computational and energystorage abilities to support WSNs in multimedia networks. This paper addresses a comprehensive survey of almost scenarios utilizing UAVs and UGVs with strogly emphasising on UAVs for data collection in WSNs. Either UGVs or UAVs can collect data from static sensor nodes in the monitoring fields. UAVs can either work alone to collect data or can cooperate with other UAVs to increase their coverage in their working fields. Different techniques to support the UAVs are addressed in this survey. Communication links, control algorithms, network structures and different mechanisms are provided and compared. Energy consumption or transportation cost for such scenarios are considered. Opening issues and challenges are provided and suggested for the future developments

    Mission-based mobility models for UAV networks

    Get PDF
    Las redes UAV han atraído la atención de los investigadores durante la última década. Las numerosas posibilidades que ofrecen los sistemas single-UAV aumentan considerablemente al usar múltiples UAV. Sin embargo, el gran potencial del sistema multi-UAV viene con un precio: la complejidad de controlar todos los aspectos necesarios para garantizar que los UAVs cumplen la misión que se les ha asignado. Ha habido numerosas investigaciones dedicadas a los sistemas multi-UAV en el campo de la robótica en las cuales se han utilizado grupos de UAVs para diferentes aplicaciones. Sin embargo, los aspectos relacionados con la red que forman estos sistemas han comenzado a reclamar un lugar entre la comunidad de investigación y han hecho que las redes de UAVs se consideren como un nuevo paradigma entre las redes multi-salto. La investigación de redes de UAVs, de manera similar a otras redes multi-salto, se divide principalmente en dos categorías: i) modelos de movilidad que capturan la movilidad de la red, y ii) algoritmos de enrutamiento. Ambas categorías han heredado muchos algoritmos que pertenecían a las redes MANET, que fueron el primer paradigma de redes multi-salto que atrajo la atención de los investigadores. Aunque hay esfuerzos de investigación en curso que proponen soluciones para ambas categorías, el número de modelos de movilidad y algoritmos de enrutamiento específicos para redes UAV es limitado. Además, en el caso de los modelos de movilidad, las soluciones existentes propuestas son simplistas y apenas representan la movilidad real de un equipo de UAVs, los cuales se utilizan principalmente en operaciones orientadas a misiones, en la que cada UAV tiene asignados movimientos específicos. Esta tesis propone dos modelos de movilidad basados en misiones para una red de UAVs que realiza dos operaciones diferentes. El escenario elegido en el que se desarrollan las misiones corresponde con una región en la que ha ocurrido, por ejemplo, un desastre natural. La elección de este tipo de escenario se debe a que en zonas de desastre, la infraestructura de comunicaciones comúnmente está dañada o totalmente destruida. En este tipo de situaciones, una red de UAVs ofrece la posibilidad de desplegar rápidamente una red de comunicaciones. El primer modelo de movilidad, llamado dPSO-U, ha sido diseñado para capturar la movilidad de una red UAV en una misión con dos objetivos principales: i) explorar el área del escenario para descubrir las ubicaciones de los nodos terrestres, y ii) hacer que los UAVs converjan de manera autónoma a los grupos en los que se organizan los nodos terrestres (también conocidos como clusters). El modelo de movilidad dPSO-U se basa en el conocido algoritmo particle swarm optimization (PSO), considerando los UAV como las partículas del algoritmo, y también utilizando el concepto de valores dinámicos para la inercia, el local best y el neighbour best de manera que el modelo de movilidad tenga ambas capacidades: la de exploración y la de convergencia. El segundo modelo, denominado modelo de movilidad Jaccard-based, captura la movilidad de una red UAV que tiene asignada la misión de proporcionar servicios de comunicación inalámbrica en un escenario de mediano tamaño. En este modelo de movilidad se ha utilizado una combinación del virtual forces algorithm (VFA), de la distancia Jaccard entre cada par de UAVs y metaheurísticas como hill climbing y simulated annealing, para cumplir los dos objetivos de la misión: i) maximizar el número de nodos terrestres (víctimas) que se encuentran bajo el área de cobertura inalámbrica de la red UAV, y ii) mantener la red UAV como una red conectada, es decir, evitando las desconexiones entre UAV. Se han realizado simulaciones exhaustivas con herramientas software específicamente desarrolladas para los modelos de movilidad propuestos. También se ha definido un conjunto de métricas para cada modelo de movilidad. Estas métricas se han utilizado para validar la capacidad de los modelos de movilidad propuestos de emular los movimientos de una red UAV en cada misión.UAV networks have attracted the attention of the research community in the last decade. The numerous capabilities of single-UAV systems increase considerably by using multiple UAVs. The great potential of a multi-UAV system comes with a price though: the complexity of controlling all the aspects required to guarantee that the UAV team accomplish the mission that it has been assigned. There have been numerous research works devoted to multi-UAV systems in the field of robotics using UAV teams for different applications. However, the networking aspects of multi-UAV systems started to claim a place among the research community and have made UAV networks to be considered as a new paradigm among the multihop ad hoc networks. UAV networks research, in a similar manner to other multihop ad hoc networks, is mainly divided into two categories: i) mobility models that capture the network mobility, and ii) routing algorithms. Both categories have inherited previous algorithms mechanisms that originally belong to MANETs, being these the first multihop networking paradigm attracting the attention of researchers. Although there are ongoing research efforts proposing solutions for the aforementioned categories, the number of UAV networks-specific mobility models and routing algorithms is limited. In addition, in the case of the mobility models, the existing solutions proposed are simplistic and barely represent the real mobility of a UAV team, which are mainly used in missions-oriented operations. This thesis proposes two mission-based mobility models for a UAV network carrying out two different operations over a disaster-like scenario. The reason for selecting a disaster scenario is because, usually, the common communication infrastructure is malfunctioning or completely destroyed. In these cases, a UAV network allows building a support communication network which is rapidly deployed. The first mobility model, called dPSO-U, has been designed for capturing the mobility of a UAV network in a mission with two main objectives: i) exploring the scenario area for discovering the location of ground nodes, and ii) making the UAVs to autonomously converge to the groups in which the nodes are organized (also referred to as clusters). The dPSO-U mobility model is based on the well-known particle swarm optimization algorithm (PSO), considering the UAVs as the particles of the algorithm, and also using the concept of dynamic inertia, local best and neighbour best weights so the mobility model can have both abilities: exploration and convergence. The second one, called Jaccard-based mobility model, captures the mobility of a UAV network that has been assigned with the mission of providing wireless communication services in a medium-scale scenario. A combination of the virtual forces algorithm (VFA), the Jaccard distance between each pair of UAVs and metaheuristics such as hill climbing or simulated annealing have been used in this mobility model in order to meet the two mission objectives: i) to maximize the number of ground nodes (i.e. victims) under the UAV network wireless coverage area, and ii) to maintain the UAV network as a connected network, i.e. avoiding UAV disconnections. Extensive simulations have been performed with software tools that have been specifically developed for the proposed mobility models. Also, a set of metrics have been defined and measured for each mobility model. These metrics have been used for validating the ability of the proposed mobility models to emulate the movements of a UAV network in each mission

    A Framework for Offline Risk-aware Planning of Low-altitude Aerial Flights during Urban Disaster Response

    Get PDF
    Disaster response missions are dynamic and dangerous events for first responders. Active situational awareness is critical for effective decision-making, and unmanned aerial assets have successfully extended the range and output of sensors. Aerial assets have demonstrated their capability in disaster response missions via decentralized operations. However, literature and industry lack a systematic investigation of the algorithms, datasets, and tools for aerial system trajectory planning in urban disasters that optimizes mission performance and guarantee mission success. This work seeks to develop a framework and software environment to investigate the requirements for offline planning algorithms and flight risk models when applied to aerial assets exploring urban disaster zones. This is addressed through the creation of rapid urban maps, efficient flight planning algorithms, and formal risk metrics that are demonstrated in scenario-driven experiments using Monte Carlo simulation. First, rapid urban mapping strategies are independently compared for efficient processing and storage through obstacle and terrain layers. Open-source data is used when available and is supplemented with an urban feature prediction model trained on satellite imagery using deep learning. Second, sampling-based planners are evaluated for efficient and effective trajectory planning of nonlinear aerial dynamic systems. The algorithm can find collision-free, kinodynamic feasible trajectories using random open-loop control targets. Alternative open-loop control commands are formed to improve the planning algorithm’s speed and convergence. Third, a risk-aware implementation of the planning algorithm is developed that considers the uncertainty of energy, collisions, and onboard viewpoint data and maps them to a single measure of the likelihood of mission failure. The three modules are combined in a framework where the rapid urban maps and risk-aware planner are evaluated against benchmarks for mission success, performance, and speed while creating a unique set of benchmarks from open-source data and software. One, the rapid urban map module generates a 3D structure and terrain map within 20 meters of data and in less than 5 minutes. The Gaussian Process terrain model performs better than B-spline and NURBS models in small-scale, mountainous environments at 10-meter squared resolution. Supplementary data for structures and other urban landcover features is predicted using the Pix2Pix Generative Adversarial Network with a 3-channel encoding for nine labels. Structures, greenspaces, water, and roads are predicted with high accuracy according to the F1, OIU, and pixel accuracy metrics. Two, the sampling-based planning algorithm is selected for forming collision-free, 3D offline flight paths with a black-box dynamics model of a quadcopter. Sampling-based planners prove successful for efficient and optimal flight paths through randomly generated and rapid urban maps, even under wind and noise uncertainty. The Stable-Sparse-RRT, SST, algorithm is shown to improve trajectories for minimum Euclidean distance more consistently and efficiently than the RRT algorithm, with a 50% improvement in finite-time path convergence for large-scale urban maps. The forward propagation dynamics of the black-box model are replaced with 5-15 times more computationally efficient motion primitives that are generated using an inverse lower-order dynamics model and the Differential Dynamic Programming, DDP, algorithm. Third, the risk-aware planning algorithm is developed that generates optimal paths based on three risk metrics of energy, collision, and viewpoint risk and quantifies the likelihood of worst-case events using the Conditional-Value-at-Risk, CVaR, metric. The sampling-based planning algorithm is improved with informative paths, and three versions of the algorithm are compared for the best performance in different scenarios. Energy risk in the planning algorithm results in 5-35% energy reduction and 20-30% more consistency in finite-time convergence for flight paths in large-scale urban maps. All three risk metrics in the planning algorithm generally result in more energy use than the planner with only energy risk, but reduce the mean flight path risk by 10-50% depending on the environment, energy available, and viewpoint landmarks. A final experiment in an Atlanta flooding scenario demonstrates the framework’s full capability with the rapid urban map displaying essential features and the trajectory planner reporting flight time, energy consumption, and total risk. Furthermore, the simulation environment provides insight into offline planning limitations through Monte Carlo simulations with environment wind and system dynamics noise. The framework and software environment are made available to use as benchmarks in the field to serve as a foundation for increasing the effectiveness of first responders’ safety in the challenging task of urban disaster response.Ph.D

    Planning Algorithms Under Uncertainty for a Team of a UAV and a UGV for Underground Exploration

    Get PDF
    Robots’ autonomy has been studied for decades in different environments, but only recently, thanks to the advance in technology and interests, robots for underground exploration gained more attention. Due to the many challenges that any robot must face in such harsh environments, this remains an challenging and complex problem to solve. As technology became cheaper and more accessible, the use of robots for underground ex- ploration increased. One of the main challenges is concerned with robot localization, which is not easily provided by any Global Navigation Services System (GNSS). Many developments have been achieved for indoor mobile ground robots, making them the easiest fit for subterranean explo- ration. With the commercialization of small drones, the potentials and benefits of aerial exploration increased along with challenges connected to their dynamics. This dissertation presents two path planning algorithms for a team of robots composed of an Unmanned Ground Vehicle (UGV) and an Unmanned Aerial Vehicle (UAV) with the task of ex- ploring a subterranean environment. First, the UAV’s localization problem is addressed by fusing different sensors present on both robots in a centralized manner. Second, a path planning algo- rithm that minimizes the UAV’s localization error is proposed. The algorithm propagates the UAV motion model in the Belief Space, evaluating for potential exploration routes that optimize the sensors’ observations. Third, a new algorithm is presented, which results to be more robust to dif- ferent environmental conditions that could affect the sensor’s measurements. This last planning algorithm leverages the use of machine learning, in particular the Gaussian Process, to improve the algorithm’s knowledge of the surrounding environment pointing out when sensors provide poor observations. The algorithm utilizes real sensor measurements to learn and predict the UAV’s lo- calization error. Extensive results are presented for the first two parts regarding the UAV’s localization and the path planning algorithm in the belief space. The localization algorithm is supported with real-world scenario experimental results, while the belief space planning algorithm has been extensively tested in a simulated environment. Finally, the last approach has also been tested in a simulated environ- ment and showed its benefits compared to the first planning algorithm

    Artificial Intelligence Applications for Drones Navigation in GPS-denied or degraded Environments

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen
    • …
    corecore