1,180 research outputs found

    Occluded iris classification and segmentation using self-customized artificial intelligence models and iterative randomized Hough transform

    Get PDF
    A fast and accurate iris recognition system is presented for noisy iris images, mainly the noises due to eye occlusion and from specular reflection. The proposed recognition system will adopt a self-customized support vector machine (SVM) and convolution neural network (CNN) classification models, where the models are built according to the iris texture GLCM and automated deep features datasets that are extracted exclusively from each subject individually. The image processing techniques used were optimized, whether the processing of iris region segmentation using iterative randomized Hough transform (IRHT), or the processing of the classification, where few significant features are considered, based on singular value decomposition (SVD) analysis, for testing the moving window matrix class if it is iris or non-iris. The iris segments matching techniques are optimized by extracting, first, the largest parallel-axis rectangle inscribed in the classified occluded-iris binary image, where its corresponding iris region is crosscorrelated with the same subject’s iris reference image for obtaining the most correlated iris segments in the two eye images. Finally, calculating the iriscode Hamming distance of the two most correlated segments to identify the subject’s unique iris pattern with high accuracy, security, and reliability

    A Groupwise Multilinear Correspondence Optimization for 3D Faces

    Get PDF
    The official version of this article is available on the IEEE websiteInternational audienceMultilinear face models are widely used to model the space of human faces with expressions. For databases of 3D human faces of different identities performing multiple expressions, these statistical shape models decouple identity and expression variations. To compute a high-quality multilinear face model, the quality of the registration of the database of 3D face scans used for training is essential. Meanwhile, a multilinear face model can be used as an effective prior to register 3D face scans, which are typically noisy and incomplete. Inspired by the minimum description length approach, we propose the first method to jointly optimize a multilinear model and the registration of the 3D scans used for training. Given an initial registration, our approach fully automatically improves the registration by optimizing an objective function that measures the compactness of the multilinear model, resulting in a sparse model. We choose a continuous representation for each face shape that allows to use a quasi-Newton method in parameter space for optimization. We show that our approach is computationally significantly more efficient and leads to correspondences of higher quality than existing methods based on linear statistical models. This allows us to evaluate our approach on large standard 3D face databases and in the presence of noisy initializations

    Single-image Tomography: 3D Volumes from 2D Cranial X-Rays

    Get PDF
    As many different 3D volumes could produce the same 2D x-ray image, inverting this process is challenging. We show that recent deep learning-based convolutional neural networks can solve this task. As the main challenge in learning is the sheer amount of data created when extending the 2D image into a 3D volume, we suggest firstly to learn a coarse, fixed-resolution volume which is then fused in a second step with the input x-ray into a high-resolution volume. To train and validate our approach we introduce a new dataset that comprises of close to half a million computer-simulated 2D x-ray images of 3D volumes scanned from 175 mammalian species. Applications of our approach include stereoscopic rendering of legacy x-ray images, re-rendering of x-rays including changes of illumination, view pose or geometry. Our evaluation includes comparison to previous tomography work, previous learning methods using our data, a user study and application to a set of real x-rays
    • …
    corecore