213 research outputs found

    Validation of performance of real-time kinematic PPP. A possible tool for deformation monitoring

    Full text link
    Structural failures (bridge or building collapses) and geohazards (landslides, ground subsi- dence or earthquakes) are worldwide problems that often lead to significant economic and loss of life. Monitoring the deformation of both natural phenomena and man-made struc- tures is a major key to assessing structural dynamic responses. Actually, this monitoring process is under real-time demand for developing warning and alert systems. One of the most used techniques for real-time deformation monitoring is the Global Navigation Satellite System (GNSS) real-time procedure, where the relative positioning approach, using a well-known reference station, has been applied. This study was conducted to evaluate the actual quality of the real-time kinematic Precise Point Positioning (PPP) GNSS solution for deformation monitoring, where it can be concluded that a promise tool is under development and should be taken into account on actual and near future real-time deformation monitoring studies and applications.This research was supported by the Spanish Science and Innovation Directorate project number AYA2010-18706 and the Generalitat Valenciana Geronimo Forteza research program with project number FPA/2014/056.Martín Furones, ÁE.; Anquela Julián, AB.; Dimas Pagés, A.; Cos-Gayón López, FJ. (2015). Validation of performance of real-time kinematic PPP. A possible tool for deformation monitoring. Measurement. 69:95-108. https://doi.org/10.1016/j.measurement.2015.03.026S951086

    Cost-Effective GNSS Hardware for High-Accuracy Surveys and Its Prospects for Post-Processed Kinematic (PPK) and Precise Point Positioning (PPP) Strategies

    Get PDF
    This dissertation determines for the first time the vertical accuracy achievable with low-cost mass-market multi-frequency, multi-GNSS (LM3GNSS) receivers, and antennas in the context of Ellipsoid Reference Survey (ERS), usually employed in bathymetric operations aboard survey platforms. LM3GNSS receivers are relatively new in the market, and their emergence is driven by the automobile industry and several mass-market applications requiring location-based solutions at high accuracies. It is foreseeable that emerging hydrographic survey platforms such as autonomous surface vehicles, small unmanned aircraft, crowd-sourced bathymetric platforms, and offshore GNSS buoy will find LM3GNSS receivers attractive since they are power- and cost-effective (often less than $1,000 per unit). Previous studies have shown that some mass-market GNSS receivers\u27 positioning accuracy is at the sub-meter level in some positioning strategies, but the authors rarely discussed the vertical accuracy. In rare cases where attention is given to the vertical component, the experiment design did not address the dynamic antenna scenario typical of hydrographic survey operations and the positioning performance that meets the hydrographic survey community\u27s aspirations. The LM3GNSS receivers and low-cost antennas considered in this dissertation achieved vertical accuracies within 0.15 m at a 95% confidence level in simulated precise point positioning (PPP) and post-processed kinematic positioning strategies. This dissertation characterizes the signal strength, multipath, carrier-phase residuals, and code residuals in the measurement quality assessment of four LM3GNSS receivers and four low-cost antennas. The dissertation investigates the performances of the LM3GNSS receivers and low-cost antennas in different antenna-receiver pairings, relative to a high-grade GNSS receiver and antenna in simulated-kinematic and precise point positioning (PPP) strategies. This dissertation also shows that solutions with an uncalibrated antenna improve with a cloned ANTEX file making the results comparable to those achieved with high-end GNSS antenna. This dissertation also describes a GNSS processing tool (with graphic user interface), developed from scratch by the author, that implements, among others, orbit interpolation and geodetic computations as steps towards multipath computation and analysis. The dissertation concludes as follows: (1) The LM3GNSS hardware considered in this dissertation provides effective alternative positioning and navigation performance for emerging survey platforms such as ASV and sUAS. (2) LM3GNSS hardware can meet vertical positioning accuracy on the order of 0.15 m at a 95% confidence level in PPP strategy on less dynamic platforms. (3) LM3GNSS receivers can provide PPK solutions at medium (30 – 40 km) baselines with a vertical positioning accuracy better than 0.15m at a 95% confidence level. (4) LM3GNSS receivers in PPP strategy should meet IHO S-44 order-1 and order-2 in shallow waters. (5) Zephyr3 antenna, being a high-end GNSS antenna, may not always offer the best performance with the LM3GNSS receiver, especially in a dynamic environment. (6) Given the current tracking capabilities, the measurement quality, and positioning performances of LM3GNSS receivers relative to the geodetic grade receiver, it is foreseeable that the distinction between high-end GNSS and LM3GNSS receivers will most likely fade away as GNSS hardware technology advances. (7) Maximizing an LM3GNSS receiver in PPK strategy requires a multi-constellation-enabled reference station and high (i.e., 1 Hz) data tracking rate; otherwise, the PPK solutions will likely drift up to 20 cm

    Solving the latency problem in real-time GNSS precise point positioning using open source software

    Get PDF
    Dissertation submitted in partial fulfilment of the requirements for the degree of Master of Science in Geospatial TechnologiesReal-time Precise Point Positioning (PPP) can provide the Global Navigation Satellites Systems (GNSS) users with the ability to determine their position accurately using only one GNSS receiver. The PPP solution does not rely on a base receiver or local GNSS network. However, for establishing a real-time PPP solution, the GNSS users are required to receive the Real-Time Service (RTS) message over the Network Transported of RTCM via Internet Protocol (NTRIP). The RTS message includes orbital, code biases, and clock corrections. The GNSS users receive those corrections produced by the analysis center with some latency, which degraded the quality of coordinates obtained through PPP. In this research, we investigate the Support Vector Machine (SVR) and RandomForest (RF) as machine learning tools to overcome the latency for clock corrections in the CLK11 and IGS03 products. A BREST International GNSS Services permanent station in France selected as a case study. BNC software implemented in real-time PPP for around three days. Our results showed that the RF method could solve the latency problem for both IGS03 and CLK11. While SVR performed better on the IGS03 than CLK11; thus, it did not solve the latency on CLK11. This research contributes to establishing a simulation of real-time GNSS user who can store and predict clock corrections accordingly to their current observed latency. The self-assessment of the reproducibility level of this study has a rank one out of the range scale from zero to three according to the criteria and classifications are done by (Nüst et al., 2018)

    Precise Orbit Determination of CubeSats

    Get PDF
    CubeSats are faced with some limitations, mainly due to the limited onboard power and the quality of the onboard sensors. These limitations significantly reduce CubeSats' applicability in space missions requiring high orbital accuracy. This thesis first investigates the limitations in the precise orbit determination of CubeSats and next develops algorithms and remedies to reach high orbital and clock accuracies. The outputs would help in increasing CubeSats' applicability in future space missions

    Improving Reliability and Assessing Performance of Global Navigation Satellite System Precise Point Positioning Ambiguity Resolution

    Get PDF
    Conventional Precise Point Positioning (PPP) has always required a relatively long initialization period (few tens of minutes at least) for the carrier-phase ambiguities to converge to constant values and for the solution to reach its optimal precision. The classical PPP convergence period is primarily caused by the estimation of the carrier-phase ambiguity from the relatively noisy pseudoranges and the estimation of atmospheric delay. If the underlying integer nature of the ambiguity is known, it can be resolved, thereby reducing the convergence time of conventional PPP. To recover the underlying integer nature of the carrier-phase ambiguities, different strategies for mitigating the satellite and receiver dependent equipment delays have been developed, and products made publicly available to enable ambiguity resolution without any baseline restrictions. There has been limited research within the scope of interoperability of the products, combining the products to improve reliability and assessment of ambiguity resolution within the scope of being an integrity indicator. This study seeks to develop strategies to enable each of these and examine their feasibility. The advantage of interoperability of the different PPP ambiguity resolution (PPP-AR) products would be to permit the PPP user to transform independently generated PPP-AR products to obtain multiple fixed solutions of comparable precision and accuracy. The ability to provide multiple solutions would increase the reliability of the solution for, e.g., real-time processing: if there were an outage in the generation of the PPP-AR products, the user could instantly switch streams to a different provider. The satellite clock combinations routinely produced within the International GNSS Service (IGS) currently disregard that analysis centers (ACs) provide products which enable ambiguity resolution. Users have been expected to choose either an IGS product which is a combined product from multiple ACs or select an individual AC solution which provides products that enable PPP-AR. The goal of the novel research presented was to develop and test a robust satellite clock combination preserving the integer nature of the carrier-phase ambiguities at the user end. mm-level differences were noted, which was expected as the strength lies mainly in its reliability and stable median performance and the combined product is better than or equivalent to any single ACs product in the combination process. As have been shown in relative positioning and PPP-AR, ambiguity resolution is critical for enabling cm-level positioning. However, what if specifications where at the few dm-level, such as 10 cm and 20 cm horizontal what role does ambiguity resolution play? The role of ambiguity resolution relies primarily on what are the user specifications. If the user specifications are at the few cm-level, ambiguity resolution is an asset as it improves convergence and solution stability. Whereas, if the users specification is at the few dm-level, ambiguity resolution offers limited improvement over the float solution. If the user has the resources to perform ambiguity resolution, even when the specifications are at the few dm-level, it should be utilized

    Consolidation and assessment of a technique to provide fast and precise point positioning (Fast-PPP)

    Get PDF
    Tesi per compendi de publicacions. La consulta íntegra de la tesi, inclosos els articles no comunicats públicament per drets d'autor, es pot realitzar prèvia petició a l'Arxiu de la UPCPremi extraordinari doctorat UPC curs 2015-2016, àmbit de CiènciesThe research of this paper-based dissertation is focused on the Fast Precise Point Positioning (Fast-PPP) technique. The novelty relies on using an accurate ionosphere model, in combination with the standard precise satellite clock and orbit products, to reduce the convergence time of state-of-the-art high-accuracy navigation techniques from approximately one hour to few minutes. My first contribution to the Fast-PPP technique as a Ph.D. student has been the design and implementation of a novel user navigation filter, based on the raw treatment of undifferenced multi-frequency code and carrier-phase Global Navigation Satellite System (GNSS) measurements. The innovative strategy of the filter avoids applying the usual ionospheric-free combination to the GNSS observables, exploiting the full capacity of new multi-frequency signals and increasing the robustness of Fast-PPP in challenging environments where the sky visibility is reduced. It has been optimised to take advantage of the corrections required to compensate the delays (i.e., errors) affecting the GNSS signals. The Fast-PPP corrections, and most important, their corrections uncertainties (i.e., the confidence bounds) are added as additional equations in the navigation filter to obtain Precise Point Positioning (PPP) in few minutes. A second contribution performed with the new user filter, has been the consolidation of the precise ionospheric modelling of Fast-PPP and its extension from a regional to a global scale. The correct use of the confidence bounds has been found of great importance when navigating in the low-latitude areas of the equator, where the ionosphere is difficult to be accurately modelled. Even in such scenario, a great consistency has been achieved between the actual positioning errors with respect to the formal errors, as demonstrated using similar figures of merit used in civil aviation, as the Stanford plot. A third contribution within this dissertation has been the characterisation of the accuracy of different ionospheric models currently used in GNSS. The assessment uses actual, unambiguous and undifferenced carrier-phase measurements, thanks to the centimetre-level modelling capability within the Fast-PPP technique. Not only the errors of the ionosphere models have been quantified in absolute and relative terms, but also, their effect on navigation.La investigació d'aquesta Tesi Doctoral per compendi d'articles es centra en la tècnica de ràpid Posicionament de Punt Precís (Fast-PPP). La novetat radica en l'ús d'un model ionosfèric precís que, combinat amb productes estàndard de rellotge i de l'òrbita de satèl·lit, redueix el temps de convergència de les actuals tècniques de navegació precisa d'aproximadament una hora a pocs minuts. La meva primera contribució a la tècnica Fast-PPP com a estudiant de Doctorat ha estat el disseny i la implementació d'un filtre de navegació d'usuari innovador, basat en el tractament de múltiples freqüències de mesures de codi i fase sense diferenciar (absolutes). La estratègia del filltre de navegació evita l'aplicació de l'habitual combinació lineal lliure de ionosfera per a aquests observables. Així, s'explota la capacitat completa dels senyals multi-freqüència en el nous Sistemes Globals de Navegació per Satèl·lit (GNSS) i s'augmenta la robustesa del Fast-PPP en entorns difícils, on es redueix la visibilitat del cel. S'ha optimitzat per tal de prendre avantatge de les correccions necessàries per a compensar els retards (és a dir, els errors) que afecten els senyals GNSS. Les correccions de Fast-PPP i més important, les seves incerteses (és a dir, els intervals de confiança) s'afegeixen com a equacions addicionals al filltre per aconseguir Posicionat de Punt Precís (PPP) en pocs minuts. La segona contribució ha estat la consolidació del modelat ionosfèric precís de Fast-PPP i la seva extensió d'un abast regional a una escala global. La correcta determinació i ús dels intervals de confiança de les correccions Fast-PPP ha esdevingut de gran importància a l'hora de navegar en zones de baixa latitud a l'equador, on la ionosfera és més difícil de modelar amb precisió. Fins i tot en aquest escenari, s'ha aconseguit una gran consistència entre els errors de posicionament reals i els nivells de protecció dels usuaris de Fast-PPP, tal com s'ha demostrat amb figures de mèrit similars a les utilitzades en l'aviació civil (els diagrames de Stanford). La tercera contribució d'aquesta Tesi Doctoral ha estat la caracterització de l'exactitud dels models ionosfèrics utilitzats actualment en GNSS. L'avaluació utilitza mesures de fase, sense ambigüitats i sense diferenciar, gràcies a la capacitat de modelatge centimètric emprat a la tècnica de Fast-PPP. No només els errors dels models de la ionosfera han estat quantificats en termes absoluts i relatius, sinó també, el seu efecte sobre la navegacióLa investigación de esta Tesis Doctoral, por compendio de artículos, se centra en la técnica de rápido Posicionamiento de Punto Preciso (Fast-PPP). La novedad, radica en el uso de un modelo ionosférico preciso que, combinado con productos estándard de reloj y órbita de satélite, reduce el tiempo de convergencia de las actuales técnicas de navegación precisa de una hora a pocos minutos.Mi primera contribución a la técnica Fast-PPP como estudiante de Doctorado ha sido el diseño y la implementación de un filtro de navegación de usuario innovador, basado en el tratamiento de múltiples frecuencias de medidas de código y fase sin diferenciar (absolutas). La estrategia del filtro de navegación evita la aplicación de la habitual combinación lineal libre de ionosfera para dichos observables. Así, se explota la capacidad de la señal multi-frecuencia en los nuevos Sistemas Globales de Navegación por Satélite (GNSS) y se aumenta la robustez del Fast-PPP en entornos difíciles, donde se reduce la visibilidad del cielo. Se ha optimizado para tomar ventaja de las correcciones necesarias para compensar los retardos (es decir, los errores) que afectan las señales GNSS. Las correcciones de Fast-PPP y más importante, sus incertidumbres (es decir, los intervalos de confianza) se añaden como ecuaciones adicionales al filtro para conseguir Posicionamiento de Punto Preciso (PPP) en pocos minutos. La segunda contribución ha estado la consolidación del modelado ionosférico preciso de Fast-PPP y la extensión de su cobertura regional a una escala global. La correcta determinación y uso de los intervalos de confianza de las correcciones Fast-PPP ha sido de gran importancia a la hora de navegar en zonas de latitudes ecuatoriales, donde la ionosfera es más difícil de modelar con precisión. Incluso en dicho escenario, se ha conseguido una gran consistencia entre los errores de posicionamiento reales y los niveles de protección de los usuarios de Fast-PPP, tal como se ha demostrado con figuras de mérito similares a las utilizadas en la aviación civil (los diagramas de Stanford).La tercera contribución de esta Tesis Doctoral ha sido la caracterización de la exactitud de los modelos ionosféricos utilizados actualmente en GNSS. El método usa medidas de fase, sin ambigüedad y sin diferenciar, gracias a la capacidad de modelado centimétrico empleado en la técnica de Fast-PPP. No solo los errores de los modelos de la ionosfera han sido cuantificados en términos absolutos y relativos, sino también, su efecto sobre la navegación.Award-winningPostprint (published version

    Precise orbit determination of LEO satellites : a systematic review

    Get PDF
    The need for precise orbit determination (POD) has grown significantly due to the increased amount of space-based activities taking place at an accelerating pace. Accurate POD positively contributes to achieving the requirements of Low-Earth Orbit (LEO) satellite missions, including improved tracking, reliability and continuity. This research aims to systematically analyze the LEO–POD in four aspects: (i) data sources used; (ii) POD technique implemented; (iii) validation method applied; (iv) accuracy level obtained. We also present the most used GNSS systems, satellite missions, processing procedures and ephemeris. The review includes studies on LEO–POD algorithms/methods and software published in the last two decades (2000–2021). To this end, 137 primary studies relevant to achieving the objective of this research were identified. After the investigation of these primary studies, it was found that several types of POD techniques have been employed in the POD of LEO satellites, with a clear trend observed for techniques using reduced-dynamic model, least-squares solvers, dual-frequency signals with undifferenced phase and code observations in post-processing mode. This review provides an understanding of the various POD techniques, dataset utilized, validation techniques, and accuracy level of LEO satellites, which have interest to developers of small satellites, new researchers and practitioners.© The Author(s) 2023. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.fi=vertaisarvioitu|en=peerReviewed

    BDS GNSS for Earth Observation

    Get PDF
    For millennia, human communities have wondered about the possibility of observing phenomena in their surroundings, and in particular those affecting the Earth on which they live. More generally, it can be conceptually defined as Earth observation (EO) and is the collection of information about the biological, chemical and physical systems of planet Earth. It can be undertaken through sensors in direct contact with the ground or airborne platforms (such as weather balloons and stations) or remote-sensing technologies. However, the definition of EO has only become significant in the last 50 years, since it has been possible to send artificial satellites out of Earth’s orbit. Referring strictly to civil applications, satellites of this type were initially designed to provide satellite images; later, their purpose expanded to include the study of information on land characteristics, growing vegetation, crops, and environmental pollution. The data collected are used for several purposes, including the identification of natural resources and the production of accurate cartography. Satellite observations can cover the land, the atmosphere, and the oceans. Remote-sensing satellites may be equipped with passive instrumentation such as infrared or cameras for imaging the visible or active instrumentation such as radar. Generally, such satellites are non-geostationary satellites, i.e., they move at a certain speed along orbits inclined with respect to the Earth’s equatorial plane, often in polar orbit, at low or medium altitude, Low Earth Orbit (LEO) and Medium Earth Orbit (MEO), thus covering the entire Earth’s surface in a certain scan time (properly called ’temporal resolution’), i.e., in a certain number of orbits around the Earth. The first remote-sensing satellites were the American NASA/USGS Landsat Program; subsequently, the European: ENVISAT (ENVironmental SATellite), ERS (European Remote-Sensing satellite), RapidEye, the French SPOT (Satellite Pour l’Observation de laTerre), and the Canadian RADARSAT satellites were launched. The IKONOS, QuickBird, and GeoEye-1 satellites were dedicated to cartography. The WorldView-1 and WorldView-2 satellites and the COSMO-SkyMed system are more recent. The latest generation are the low payloads called Small Satellites, e.g., the Chinese BuFeng-1 and Fengyun-3 series. Also, Global Navigation Satellite Systems (GNSSs) have captured the attention of researchers worldwide for a multitude of Earth monitoring and exploration applications. On the other hand, over the past 40 years, GNSSs have become an essential part of many human activities. As is widely noted, there are currently four fully operational GNSSs; two of these were developed for military purposes (American NAVstar GPS and Russian GLONASS), whilst two others were developed for civil purposes such as the Chinese BeiDou satellite navigation system (BDS) and the European Galileo. In addition, many other regional GNSSs, such as the South Korean Regional Positioning System (KPS), the Japanese quasi-zenital satellite system (QZSS), and the Indian Regional Navigation Satellite System (IRNSS/NavIC), will become available in the next few years, which will have enormous potential for scientific applications and geomatics professionals. In addition to their traditional role of providing global positioning, navigation, and timing (PNT) information, GNSS navigation signals are now being used in new and innovative ways. Across the globe, new fields of scientific study are opening up to examine how signals can provide information about the characteristics of the atmosphere and even the surfaces from which they are reflected before being collected by a receiver. EO researchers monitor global environmental systems using in situ and remote monitoring tools. Their findings provide tools to support decision makers in various areas of interest, from security to the natural environment. GNSS signals are considered an important new source of information because they are a free, real-time, and globally available resource for the EO community

    GNSS precise point positioning :the enhancement with GLONASS

    Get PDF
    PhD ThesisPrecise Point Positioning (PPP) provides GNSS navigation using a stand-alone receiver with no base station. As a technique PPP suffers from long convergence times and quality degradation during periods of poo satellite visibility or geometry. Many applications require reliable realtime centimetre level positioning with worldwide coverage, and a short initialisation time. To achieve these goals, this thesis considers the use of GLONASS in conjunction with GPS in kinematic PPP. This increases the number of satellites visible to the receiver, improving the geometry of the visible satellite constellation. To assess the impact of using GLONASS with PPP, it was necessary to build a real time mode PPP program. pppncl was constructed using a combination of Fortran and Python to be capable of processing GNSS observations with precise satellite ephemeris data in the standardised RINEX and SP3 formats respectively. pppncl was validated in GPS mode using both staticsites and kinematic datasets.In GPS only mode,one sigma accuracy of 6.4mm and 13mm in the horizontal and vertical respectively for 24h static positioning was seen. Kinematic horizontal and vertical accuracies of 21mm and 33mm were demonstrated. pppncl was extended to assess the impact of using GLONASS observations in addi- tion to GPS instatic and kinematic PPP. Using ESA and Veripos Apex G2 satel- lite orbit and clock products,the average time until 10cm 1D static accuracy was achieved, over arange of globally distributed sites, was seen to reduce by up to 47%. Kinematic positioning was tested for different modes of transport using real world datasets. GPS/GLONAS SPPP reduced the convergence time to decimetre accuracy by up to a factor of three. Positioning was seen to be more robust in comparison to GPS only PPP, primarily due to cycle slips not being present on both satellite systems on the occasions when they occurred,and the reduced impact of undetected outliersEngineering and Physical Sciences Research Council, Verip os/Subsea
    corecore