1,748 research outputs found

    WYFIWIF: A Haptic Communication Paradigm For Collaborative Motor Skills Learning

    Get PDF
    International audienceMotor skills transfer is a challenging issue for many applications such as surgery, design and industry. In order to design virtual environments that support motor skills learning, a deep understanding of humans' haptic interactions is required. To ensure skills transfer, experts and novices need to collaborate. This requires the construction of the common frame of reference between the teacher and the learner in order to understand each other. In this paper, human-human haptic collaboration is investigated in order to understand how haptic information is exchanged. Furthermore, WYFIWIF (What You Feel Is What I Feel), a haptic communication paradigm is introduced. This paradigm is based on a hand guidance metaphor. The paradigm helps operators to construct an efficient common frame of reference by allowing a direct haptic communication. A learning virtual environment is used to evaluate this haptic communication paradigm. Hence, 60 volunteer students performed a needle insertion learning task. The results of this experiment show that, compared to conventional methods, the learning method based on haptic communication improves the novices' performance in such a task. We conclude that the WYFIWIF paradigm facilitate expert-novice haptic collaboration to teach motor skills

    WYFIWIF: A Haptic Communication Paradigm For Collaborative Motor Skills Learning

    Get PDF
    International audienceMotor skills transfer is a challenging issue for many applications such as surgery, design and industry. In order to design virtual environments that support motor skills learning, a deep understanding of humans' haptic interactions is required. To ensure skills transfer, experts and novices need to collaborate. This requires the construction of the common frame of reference between the teacher and the learner in order to understand each other. In this paper, human-human haptic collaboration is investigated in order to understand how haptic information is exchanged. Furthermore, WYFIWIF (What You Feel Is What I Feel), a haptic communication paradigm is introduced. This paradigm is based on a hand guidance metaphor. The paradigm helps operators to construct an efficient common frame of reference by allowing a direct haptic communication. A learning virtual environment is used to evaluate this haptic communication paradigm. Hence, 60 volunteer students performed a needle insertion learning task. The results of this experiment show that, compared to conventional methods, the learning method based on haptic communication improves the novices' performance in such a task. We conclude that the WYFIWIF paradigm facilitate expert-novice haptic collaboration to teach motor skills

    An empirical examination of feedback : user control and performance in a hapto-audio-visual training environment

    Full text link
    Utilising advanced technologies, such as virtual environments (VEs), is of importance to training and education. The need to develop and effectively apply interactive, immersive 3D VEs continues to grow. As with any emerging technology, user acceptance of new software and hardware devices is often difficult to measure and guidelines to introduce and ensure adequate and correct usage of such technologies are lacking. It is therefore imperative to obtain a solid understanding of the important elements that play a role in effective learning through VEs. In particular, 3D VEs may present unusual and varied interaction and adoption considerations. The major contribution of this study is to investigate a complex set of interrelated factors in the relatively new sphere of VEs for training and education. Although many of the factors appears to be important from past research, researcher have not explicitly studied a comprehensive set of inter-dependant, empirically validated factors in order to understand how VEs aid complex procedural knowledge and motor skill learning. By integrating theory from research on training, human computer interaction (HCI), ergonomics and cognitive psychology, this research proposes and validates a model that contributes to application-specific VE efficacy formation. The findings of this study show visual feedback has a significant effect on performance. For tactile/force feedback and auditory feedback, no significant effect were found. For satisfaction, user control is salient for performance. Other factors such as interactivity and system comfort, as well as level of task difficulty, also showed effects on performance.<br /

    Tactile-STAR: A Novel Tactile STimulator And Recorder System for Evaluating and Improving Tactile Perception

    Get PDF
    Many neurological diseases impair the motor and somatosensory systems. While several different technologies are used in clinical practice to assess and improve motor functions, somatosensation is evaluated subjectively with qualitative clinical scales. Treatment of somatosensory deficits has received limited attention. To bridge the gap between the assessment and training of motor vs. somatosensory abilities, we designed, developed, and tested a novel, low-cost, two-component (bimanual) mechatronic system targeting tactile somatosensation: the Tactile-STAR—a tactile stimulator and recorder. The stimulator is an actuated pantograph structure driven by two servomotors, with an end-effector covered by a rubber material that can apply two different types of skin stimulation: brush and stretch. The stimulator has a modular design, and can be used to test the tactile perception in different parts of the body such as the hand, arm, leg, big toe, etc. The recorder is a passive pantograph that can measure hand motion using two potentiometers. The recorder can serve multiple purposes: participants can move its handle to match the direction and amplitude of the tactile stimulator, or they can use it as a master manipulator to control the tactile stimulator as a slave. Our ultimate goal is to assess and affect tactile acuity and somatosensory deficits. To demonstrate the feasibility of our novel system, we tested the Tactile-STAR with 16 healthy individuals and with three stroke survivors using the skin-brush stimulation. We verified that the system enables the mapping of tactile perception on the hand in both populations. We also tested the extent to which 30 min of training in healthy individuals led to an improvement of tactile perception. The results provide a first demonstration of the ability of this new system to characterize tactile perception in healthy individuals, as well as a quantification of the magnitude and pattern of tactile impairment in a small cohort of stroke survivors. The finding that short-term training with Tactile-STARcan improve the acuity of tactile perception in healthy individuals suggests that Tactile-STAR may have utility as a therapeutic intervention for somatosensory deficits

    Learning force patterns with a multimodal system using contextual cues

    Get PDF
    Previous studies on learning force patterns (fine motor skills) have focused on providing “punctual information”, which means users only receive information about their performance at the current time step. This work proposes a new approach based on “contextual information”, in which users receive information not only about the current time step, but also about the past (how the target force has changed over time) and the future (how the target force will change). A test was run to compare the performance of the contextual approach in relation to the punctual information, in which each participant had to memorize and then reproduce a pattern of force after training with a multimodal system. The findings suggest that the contextual approach is a useful strategy for force pattern learning. The advantage of the contextual information approach over the punctual information approach is that users receive information about the evolution of their performance (helping to correct the errors), and they also receive information about the next forces to be exerted (providing them with a better understanding of the target force profile). Finally, the contextual approach could be implemented in medical training platforms or surgical robots to extend the capabilities of these systems

    Haptic communication to support biopsy procedures learning in virtual environments

    Get PDF
    International audienceIn interventional radiology, physicians require high haptic sensitivity and fine motor skills development because of the limited real-time visual feedback of the surgical site. The transfer of this type of surgical skill to novices is a challenging issue. This paper presents a study on the design of a biopsy procedure learning system. Our methodology, based on a task-centered design approach, aims to bring out new design rules for virtual learning environments. A new collaborative haptic training paradigm is introduced to support human-haptic interaction in a virtual environment. The interaction paradigm supports haptic communication between two distant users to teach a surgical skill. In order to evaluate this paradigm, a user experiment was conducted. Sixty volunteer medical students participated in the study to assess the influence of the teaching method on their performance in a biopsy procedure task. The results show that to transfer the skills, the combination of haptic communication with verbal and visual communications improves the novices' performance compared to conventional teaching methods. Furthermore, the results show that, depending on the teaching method, participants developed different needle insertion profiles. We conclude that our interaction paradigm facilitates expert-novice haptic communication and improves skills transfer; and new skills acquisition depends on the availability of different communication channels between experts and novices. Our findings indicate that the traditional fellowship methods in surgery should evolve to an off-patient collaborative environment that will continue to support visual and verbal communication, but also haptic communication, in order to achieve a better and more complete skills training

    Haptic communication to support biopsy procedures learning in virtual environments

    Get PDF
    International audienceIn interventional radiology, physicians require high haptic sensitivity and fine motor skills development because of the limited real-time visual feedback of the surgical site. The transfer of this type of surgical skill to novices is a challenging issue. This paper presents a study on the design of a biopsy procedure learning system. Our methodology, based on a task-centered design approach, aims to bring out new design rules for virtual learning environments. A new collaborative haptic training paradigm is introduced to support human-haptic interaction in a virtual environment. The interaction paradigm supports haptic communication between two distant users to teach a surgical skill. In order to evaluate this paradigm, a user experiment was conducted. Sixty volunteer medical students participated in the study to assess the influence of the teaching method on their performance in a biopsy procedure task. The results show that to transfer the skills, the combination of haptic communication with verbal and visual communications improves the novices' performance compared to conventional teaching methods. Furthermore, the results show that, depending on the teaching method, participants developed different needle insertion profiles. We conclude that our interaction paradigm facilitates expert-novice haptic communication and improves skills transfer; and new skills acquisition depends on the availability of different communication channels between experts and novices. Our findings indicate that the traditional fellowship methods in surgery should evolve to an off-patient collaborative environment that will continue to support visual and verbal communication, but also haptic communication, in order to achieve a better and more complete skills training

    Influence of Haptic Communication on a Shared Manual Task in a Collaborative Virtual Environment

    Get PDF
    International audienceWith the advent of new haptic feedback devices, researchers are giving serious consideration to the incorporation of haptic communication in collaborative virtual environments. For instance, haptic interactions based tools can be used for medical and related education whereby students can train in minimal invasive surgery using virtual reality before approaching human subjects. To design virtual environments that support haptic communication, a deeper understanding of humans' haptic interactions is required. In this paper, human's haptic collaboration is investigated. A collaborative virtual environment was designed to support performing a shared manual task. To evaluate this system, 60 medical students participated to an experimental study. Participants were asked to perform in dyads a needle insertion task after a training period. Results show that compared to conventional training methods, a visual-haptic training improves user's collaborative performance. In addition, we found that haptic interaction influences the partners' verbal communication when sharing haptic information. This indicates that the haptic communication training changes the nature of the users' mental representations. Finally, we found that haptic interactions increased the sense of copresence in the virtual environment: haptic communication facilitates users' collaboration in a shared manual task within a shared virtual environment. Design implications for including haptic communication in virtual environments are outlined
    • …
    corecore