48 research outputs found

    Advances in Human-Robot Interaction

    Get PDF
    Rapid advances in the field of robotics have made it possible to use robots not just in industrial automation but also in entertainment, rehabilitation, and home service. Since robots will likely affect many aspects of human existence, fundamental questions of human-robot interaction must be formulated and, if at all possible, resolved. Some of these questions are addressed in this collection of papers by leading HRI researchers

    HUMAN CONTROL OF COOPERATING ROBOTS

    Get PDF
    Advances in robotic technologies and artificial intelligence are allowing robots to emerge fromresearch laboratories into our lives. Experiences with field applications show that we haveunderestimated the importance of human-robot interaction (HRI) and that new problems arise inHRI as robotic technologies expand. This thesis classifies HRI along four dimensions - human,robot, task, and world and illustrates that previous HRI classifications can be successfullyinterpreted as either about one of these elements or about the relationship between two or moreof these elements. Current HRI studies of single-operator single-robot (SOSR) control andsingle-operator multiple-robots (SOMR) control are reviewed using this approach.Human control of multiple robots has been suggested as a way to improve effectiveness inrobot control. Unlike previous studies that investigated human interaction either in low-fidelitysimulations or based on simple tasks, this thesis investigates human interaction with cooperatingrobot teams within a realistically complex environment. USARSim, a high-fidelity game-enginebasedrobot simulator, and MrCS, a distributed multirobot control system, were developed forthis purpose. In the pilot experiment, we studied the impact of autonomy level. Mixed initiativecontrol yielded performance superior to fully autonomous and manual control.To avoid limitation to particular application fields, the present thesis focuses on commonHRI evaluations that enable us to analyze HRI effectiveness and guide HRI design independentlyof the robotic system or application domain. We introduce the interaction episode (IEP), whichwas inspired by our pilot human-multirobot control experiment, to extend the Neglect ToleranceHUMAN CONTROL OF COOPERATING ROBOTSJijun Wang, Ph.D.University of Pittsburgh, 2007vmodel to support general multiple robots control for complex tasks. Cooperation Effort (CE),Cooperation Demand (CD), and Team Attention Demand (TAD) are defined to measure thecooperation in SOMR control. Two validation experiments were conducted to validate the CDmeasurement under tight and weak cooperation conditions in a high-fidelity virtual environment.The results show that CD, as a generic HRI metric, is able to account for the various factors thataffect HRI and can be used in HRI evaluation and analysis

    Affective Computing

    Get PDF
    This book provides an overview of state of the art research in Affective Computing. It presents new ideas, original results and practical experiences in this increasingly important research field. The book consists of 23 chapters categorized into four sections. Since one of the most important means of human communication is facial expression, the first section of this book (Chapters 1 to 7) presents a research on synthesis and recognition of facial expressions. Given that we not only use the face but also body movements to express ourselves, in the second section (Chapters 8 to 11) we present a research on perception and generation of emotional expressions by using full-body motions. The third section of the book (Chapters 12 to 16) presents computational models on emotion, as well as findings from neuroscience research. In the last section of the book (Chapters 17 to 22) we present applications related to affective computing

    Mobile Robots Navigation

    Get PDF
    Mobile robots navigation includes different interrelated activities: (i) perception, as obtaining and interpreting sensory information; (ii) exploration, as the strategy that guides the robot to select the next direction to go; (iii) mapping, involving the construction of a spatial representation by using the sensory information perceived; (iv) localization, as the strategy to estimate the robot position within the spatial map; (v) path planning, as the strategy to find a path towards a goal location being optimal or not; and (vi) path execution, where motor actions are determined and adapted to environmental changes. The book addresses those activities by integrating results from the research work of several authors all over the world. Research cases are documented in 32 chapters organized within 7 categories next described

    Mobile Robots

    Get PDF
    The objective of this book is to cover advances of mobile robotics and related technologies applied for multi robot systems' design and development. Design of control system is a complex issue, requiring the application of information technologies to link the robots into a single network. Human robot interface becomes a demanding task, especially when we try to use sophisticated methods for brain signal processing. Generated electrophysiological signals can be used to command different devices, such as cars, wheelchair or even video games. A number of developments in navigation and path planning, including parallel programming, can be observed. Cooperative path planning, formation control of multi robotic agents, communication and distance measurement between agents are shown. Training of the mobile robot operators is very difficult task also because of several factors related to different task execution. The presented improvement is related to environment model generation based on autonomous mobile robot observations

    The role of trust and relationships in human-robot social interaction

    Get PDF
    Can a robot understand a human's social behavior? Moreover, how should a robot act in response to a human's behavior? If the goals of artificial intelligence are to understand, imitate, and interact with human level intelligence then researchers must also explore the social underpinnings of this intellect. Our endeavor is buttressed by work in biology, neuroscience, social psychology and sociology. Initially developed by Kelley and Thibaut, social psychology's interdependence theory serves as a conceptual skeleton for the study of social situations, a computational process of social deliberation, and relationships (Kelley&Thibaut, 1978). We extend and expand their original work to explore the challenge of interaction with an embodied, situated robot. This dissertation investigates the use of outcome matrices as a means for computationally representing a robot's interactions. We develop algorithms that allow a robot to create these outcome matrices from perceptual information and then to use them to reason about the characteristics of their interactive partner. This work goes on to introduce algorithms that afford a means for reasoning about a robot's relationships and the trustworthiness of a robot's partners. Overall, this dissertation embodies a general, principled approach to human-robot interaction which results in a novel and scientifically meaningful approach to topics such as trust and relationships.Ph.D.Committee Chair: Arkin, Ronald C.; Committee Member: Christensen, Henrik I.; Committee Member: Fisk, Arthur D.; Committee Member: Ram, Ashwin; Committee Member: Thomaz, Andre

    Evolutionary Robot Swarms Under Real-World Constraints

    Get PDF
    Tese de doutoramento em Engenharia Electrotécnica e de Computadores, na especialidade de Automação e Robótica, apresentada ao Departamento de Engenharia Electrotécnica e de Computadores da Faculdade de Ciências e Tecnologia da Universidade de CoimbraNas últimas décadas, vários cientistas e engenheiros têm vindo a estudar as estratégias provenientes da natureza. Dentro das arquiteturas biológicas, as sociedades que vivem em enxames revelam que agentes simplistas, tais como formigas ou pássaros, são capazes de realizar tarefas complexas usufruindo de mecanismos de cooperação. Estes sistemas abrangem todas as condições necessárias para a sobrevivência, incorporando comportamentos de cooperação, competição e adaptação. Na “batalha” sem fim em prol do progresso dos mecanismos artificiais desenvolvidos pelo homem, a ciência conseguiu simular o primeiro comportamento em enxame no final dos anos oitenta. Desde então, muitas outras áreas, entre as quais a robótica, beneficiaram de mecanismos de tolerância a falhas inerentes da inteligência coletiva de enxames. A área de investigação deste estudo incide na robótica de enxame, consistindo num domínio particular dos sistemas robóticos cooperativos que incorpora os mecanismos de inteligência coletiva de enxames na robótica. Mais especificamente, propõe-se uma solução completa de robótica de enxames a ser aplicada em contexto real. Nesta ótica, as operações de busca e salvamento foram consideradas como o caso de estudo principal devido ao nível de complexidade associado às mesmas. Tais operações ocorrem tipicamente em cenários dinâmicos de elevadas dimensões, com condições adversas que colocam em causa a aplicabilidade dos sistemas robóticos cooperativos. Este estudo centra-se nestes problemas, procurando novos desafios que não podem ser ultrapassados através da simples adaptação da literatura da especialidade em algoritmos de enxame, planeamento, controlo e técnicas de tomada de decisão. As contribuições deste trabalho sustentam-se em torno da extensão do método Particle Swarm Optimization (PSO) aplicado a sistemas robóticos cooperativos, denominado de Robotic Darwinian Particle Swarm Optimization (RDPSO). O RDPSO consiste numa arquitetura robótica de enxame distribuída que beneficia do particionamento dinâmico da população de robôs utilizando mecanismos evolucionários de exclusão social baseados na sobrevivência do mais forte de Darwin. No entanto, apesar de estar assente no caso de estudo do RDPSO, a aplicabilidade dos conceitos aqui propostos não se encontra restrita ao mesmo, visto que todos os algoritmos parametrizáveis de enxame de robôs podem beneficiar de uma abordagem idêntica. Os fundamentos em torno do RDPSO são introduzidos, focando-se na dinâmica dos robôs, nos constrangimentos introduzidos pelos obstáculos e pela comunicação, e nas suas propriedades evolucionárias. Considerando a colocação inicial dos robôs no ambiente como algo fundamental para aplicar sistemas de enxames em aplicações reais, é assim introduzida uma estratégia de colocação de robôs realista. Para tal, a população de robôs é dividida de forma hierárquica, em que são utilizadas plataformas mais robustas para colocar as plataformas de enxame no cenário de forma autónoma. Após a colocação dos robôs no cenário, é apresentada uma estratégia para permitir a criação e manutenção de uma rede de comunicação móvel ad hoc com tolerância a falhas. Esta estratégia não considera somente a distância entre robôs, mas também a qualidade do nível de sinal rádio frequência, redefinindo assim a sua aplicabilidade em cenários reais. Os aspetos anteriormente mencionados estão sujeitos a uma análise detalhada do sistema de comunicação inerente ao algoritmo, para atingir uma implementação mais escalável do RDPSO a cenários de elevada complexidade. Esta elevada complexidade inerente à dinâmica dos cenários motivaram a ultimar o desenvolvimento do RDPSO, integrando para o efeito um mecanismo adaptativo baseado em informação contextual (e.g., nível de atividade do grupo). Face a estas considerações, o presente estudo pode contribuir para expandir o estado-da-arte em robótica de enxame com algoritmos inovadores aplicados em contexto real. Neste sentido, todos os métodos propostos foram extensivamente validados e comparados com alternativas, tanto em simulação como com robôs reais. Para além disso, e dadas as limitações destes (e.g., número limitado de robôs, cenários de dimensões limitadas, constrangimentos reais limitados), este trabalho contribui ainda para um maior aprofundamento do estado-da-arte, onde se propõe um modelo macroscópico capaz de capturar a dinâmica inerente ao RDPSO e, até certo ponto, estimar analiticamente o desempenho coletivo dos robôs perante determinada tarefa. Em suma, esta investigação pode ter aplicabilidade prática ao colmatar a lacuna que se faz sentir no âmbito das estratégias de enxames de robôs em contexto real e, em particular, em cenários de busca e salvamento.Over the past decades, many scientists and engineers have been studying nature’s best and time-tested patterns and strategies. Within the existing biological architectures, swarm societies revealed that relatively unsophisticated agents with limited capabilities, such as ants or birds, were able to cooperatively accomplish complex tasks necessary for their survival. Those simplistic systems embrace all the conditions necessary to survive, thus embodying cooperative, competitive and adaptive behaviours. In the never-ending battle to advance artificial manmade mechanisms, computer scientists simulated the first swarm behaviour designed to mimic the flocking behaviour of birds in the late eighties. Ever since, many other fields, such as robotics, have benefited from the fault-tolerant mechanism inherent to swarm intelligence. The area of research presented in this Ph.D. Thesis focuses on swarm robotics, which is a particular domain of multi-robot systems (MRS) that embodies the mechanisms of swarm intelligence into robotics. More specifically, this Thesis proposes a complete swarm robotic solution that can be applied to real-world missions. Although the proposed methods do not depend on any particular application, search and rescue (SaR) operations were considered as the main case study due to their inherent level of complexity. Such operations often occur in highly dynamic and large scenarios, with harsh and faulty conditions, that pose several problems to MRS applicability. This Thesis focuses on these problems raising new challenges that cannot be handled appropriately by simple adaptation of state-of-the-art swarm algorithms, planning, control and decision-making techniques. The contributions of this Thesis revolve around an extension of the Particle Swarm Optimization (PSO) to MRS, denoted as Robotic Darwinian Particle Swarm Optimization (RDPSO). The RDPSO is a distributed swarm robotic architecture that benefits from the dynamical partitioning of the whole swarm of robots by means of an evolutionary social exclusion mechanism based on Darwin’s survival-of-the-fittest. Nevertheless, although currently applied solely to the RDPSO case study, the applicability of all concepts herein proposed is not restricted to it, since all parameterized swarm robotic algorithms may benefit from a similar approach The RDPSO is then proposed and used to devise the applicability of novel approaches. The fundamentals around the RDPSO are introduced by focusing on robots’ dynamics, obstacle avoidance, communication constraints and its evolutionary properties. Afterwards, taking the initial deployment of robots within the environment as a basis for applying swarm robotics systems into real-world applications, the development of a realistic deployment strategy is proposed. For that end, the population of robots is hierarchically divided, wherein larger support platforms autonomously deploy smaller exploring platforms in the scenario, while considering communication constraints and obstacles. After the deployment, a way of ensuring a fault-tolerant multi-hop mobile ad hoc communication network (MANET) is introduced to explicitly exchange information needed in a collaborative realworld task execution. Such strategy not only considers the maximum communication range between robots, but also the minimum signal quality, thus refining the applicability to real-world context. This is naturally followed by a deep analysis of the RDPSO communication system, describing the dynamics of the communication data packet structure shared between teammates. Such procedure is a first step to achieving a more scalable implementation by optimizing the communication procedure between robots. The highly dynamic characteristics of real-world applications motivated us to ultimate the RDPSO development with an adaptive strategy based on a set of context-based evaluation metrics. This thesis contributes to the state-of-the-art in swarm robotics with novel algorithms for realworld applications. All of the proposed approaches have been extensively validated in benchmarking tasks, in simulation, and with real robots. On top of that, and due to the limitations inherent to those (e.g., number of robots, scenario dimensions, real-world constraints), this Thesis further contributes to the state-of-the-art by proposing a macroscopic model able to capture the RDPSO dynamics and, to some extent, analytically estimate the collective performance of robots under a certain task. It is the author’s expectation that this Ph.D. Thesis may shed some light into bridging the reality gap inherent to the applicability of swarm strategies to real-world scenarios, and in particular to SaR operations.FCT - SFRH/BD /73382/201
    corecore