19,397 research outputs found

    What Am I Testing and Where? Comparing Testing Procedures based on Lightweight Requirements Annotations

    Get PDF
    [Context] The testing of software-intensive systems is performed in different test stages each having a large number of test cases. These test cases are commonly derived from requirements. Each test stages exhibits specific demands and constraints with respect to their degree of detail and what can be tested. Therefore, specific test suites are defined for each test stage. In this paper, the focus is on the domain of embedded systems, where, among others, typical test stages are Software- and Hardware-in-the-loop. [Objective] Monitoring and controlling which requirements are verified in which detail and in which test stage is a challenge for engineers. However, this information is necessary to assure a certain test coverage, to minimize redundant testing procedures, and to avoid inconsistencies between test stages. In addition, engineers are reluctant to state their requirements in terms of structured languages or models that would facilitate the relation of requirements to test executions. [Method] With our approach, we close the gap between requirements specifications and test executions. Previously, we have proposed a lightweight markup language for requirements which provides a set of annotations that can be applied to natural language requirements. The annotations are mapped to events and signals in test executions. As a result, meaningful insights from a set of test executions can be directly related to artifacts in the requirements specification. In this paper, we use the markup language to compare different test stages with one another. [Results] We annotate 443 natural language requirements of a driver assistance system with the means of our lightweight markup language. The annotations are then linked to 1300 test executions from a simulation environment and 53 test executions from test drives with human drivers. Based on the annotations, we are able to analyze how similar the test stages are and how well test stages and test cases are aligned with the requirements. Further, we highlight the general applicability of our approach through this extensive experimental evaluation. [Conclusion] With our approach, the results of several test levels are linked to the requirements and enable the evaluation of complex test executions. By this means, practitioners can easily evaluate how well a systems performs with regards to its specification and, additionally, can reason about the expressiveness of the applied test stage.TU Berlin, Open-Access-Mittel - 202

    The relation between language and theory of mind in development and evolution

    Get PDF
    Considering the close relation between language and theory of mind in development and their tight connection in social behavior, it is no big leap to claim that the two capacities have been related in evolution as well. But what is the exact relation between them? This paper attempts to clear a path toward an answer. I consider several possible relations between the two faculties, bring conceptual arguments and empirical evidence to bear on them, and end up arguing for a version of co-evolution. To model this co-evolution, we must distinguish between different stages or levels of language and theory of mind, which fueled each other’s evolution in a protracted escalation process

    ERIGrid Holistic Test Description for Validating Cyber-Physical Energy Systems

    Get PDF
    Smart energy solutions aim to modify and optimise the operation of existing energy infrastructure. Such cyber-physical technology must be mature before deployment to the actual infrastructure, and competitive solutions will have to be compliant to standards still under development. Achieving this technology readiness and harmonisation requires reproducible experiments and appropriately realistic testing environments. Such testbeds for multi-domain cyber-physical experiments are complex in and of themselves. This work addresses a method for the scoping and design of experiments where both testbed and solution each require detailed expertise. This empirical work first revisited present test description approaches, developed a newdescription method for cyber-physical energy systems testing, and matured it by means of user involvement. The new Holistic Test Description (HTD) method facilitates the conception, deconstruction and reproduction of complex experimental designs in the domains of cyber-physical energy systems. This work develops the background and motivation, offers a guideline and examples to the proposed approach, and summarises experience from three years of its application.This work received funding in the European Community’s Horizon 2020 Program (H2020/2014–2020) under project “ERIGrid” (Grant Agreement No. 654113)

    Case-based reasoning combined with statistics for diagnostics and prognosis

    Get PDF
    Many approaches used for diagnostics today are based on a precise model. This excludes diagnostics of many complex types of machinery that cannot be modelled and simulated easily or without great effort. Our aim is to show that by including human experience it is possible to diagnose complex machinery when there is no or limited models or simulations available. This also enables diagnostics in a dynamic application where conditions change and new cases are often added. In fact every new solved case increases the diagnostic power of the system. We present a number of successful projects where we have used feature extraction together with case-based reasoning to diagnose faults in industrial robots, welding, cutting machinery and we also present our latest project for diagnosing transmissions by combining Case-Based Reasoning (CBR) with statistics. We view the fault diagnosis process as three consecutive steps. In the first step, sensor fault signals from machines and/or input from human operators are collected. Then, the second step consists of extracting relevant fault features. In the final diagnosis/prognosis step, status and faults are identified and classified. We view prognosis as a special case of diagnosis where the prognosis module predicts a stream of future features

    Combining goal-oriented and model-driven approaches to solve the Payment Problem Scenario

    Get PDF
    Motivated by the objective to provide an improved participation of business domain experts in the design of service-oriented integration solutions, we extend our previous work on using the COSMO methodology for service mediation by introducing a goal-oriented approach to requirements engineering. With this approach, business requirements including the motivations behind the mediation solution are better understood, specified, and aligned with their technical implementations. We use the Payment Problem Scenario of the SWS Challenge to illustrate the extension

    Integrating case study and survey research methods: An example in information systems

    Get PDF
    The case for combining research methods generally, and more specifically that for combining qualitative and quantitative methods, is strong. Yet, research designs that extensively integrate both fieldwork (e.g. case studies) and survey research are rare. More¬over, some journals tend tacitly to specialize by methodology thereby encouraging purity of method. The multi-method model of research while not new, has not been appreciated. In this respect it is useful to articulate and describe its usage through example. By reference to a recently completed study of IS consultant engagement success factors this paper presents an analysis of the benefits of integrating case study and survey research methods. The emphasis is on the qualitative case study method and how it can compliment more quantitative survey research. Benefits are demonstrated through specific examples from the reference study.</i

    Business model scaling and growth hacking in digital entrepreneurship

    Get PDF
    Creating an innovative product and validating an innovative business model may not be enough for digital startups to be competitive. To grow fast and expand globally, digital startups need to innovate their business model during the scaling phase. A pragmatic approach has recently been proposed to support digital entrepreneurs engaging in business-model innovation during the scaling phase (i.e., business-model scaling), a strategy known as growth hacking. However, we know little about its theoretical grounding and how effective growth hacking is, as businesses lack methodologies to assess its effectiveness before committing resources and investments. To fill this gap, we developed a method for supporting business- model scaling through simulation modeling and provided an illustrative application to the PayPal case. By doing so, we contribute to the ongoing debate on scalability in digital entrepreneurship

    Research priorities in light of current trends in microsurgical training: revalidation, simulation, cross-training, and standardisation.

    Get PDF
    This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/ licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly citedPlastic surgery training worldwide has seen a thorough restructuring over the past decade, with the introduction of formal training curricula and work-based assessment tools. Part of this process has been the introduction of revalidation and a greater use of simulation in training delivery. Simulation is an increasingly important tool for educators because it provides a way to reduce risks to both trainees and patients, whilst facilitating improved technical proficiency. Current microsurgery training interventions are often predicated on theories of skill acquisition and development that follow a 'practice makes perfect' model. Given the changing landscape of surgical training and advances in educational theories related to skill development, research is needed to assess the potential benefits of alternative models, particularly cross-training, a model now widely used in non-medical areas with significant benefits. Furthermore, with the proliferation of microsurgery training interventions and therefore diversity in length, cost, content and models used, appropriate standardisation will be an important factor to ensure that courses deliver consistent and effective training that achieves appropriate levels of competency. Key research requirements should be gathered and used in directing further research in these areas to achieve on-going improvement of microsurgery training
    • …
    corecore