9,126 research outputs found

    SPoT: Representing the Social, Spatial, and Temporal Dimensions of Human Mobility with a Unifying Framework

    Get PDF
    Modeling human mobility is crucial in the analysis and simulation of opportunistic networks, where contacts are exploited as opportunities for peer-topeer message forwarding. The current approach with human mobility modeling has been based on continuously modifying models, trying to embed in them the mobility properties (e.g., visiting patterns to locations or specific distributions of inter-contact times) as they came up from trace analysis. As a consequence, with these models it is difficult, if not impossible, to modify the features of mobility or to control the exact shape of mobility metrics (e.g., modifying the distribution of inter-contact times). For these reasons, in this paper we propose a mobility framework rather than a mobility model, with the explicit goal of providing a exible and controllable tool for modeling mathematically and generating simulatively different possible features of human mobility. Our framework, named SPoT, is able to incorporate the three dimensions - spatial, social, and temporal - of human mobility. The way SPoT does it is by mapping the different social communities of the network into different locations, whose members visit with a configurable temporal pattern. In order to characterize the temporal patterns of user visits to locations and the relative positioning of locations based on their shared users, we analyze the traces of real user movements extracted from three location-based online social networks (Gowalla, Foursquare, and Altergeo). We observe that a Bernoulli process effectively approximates user visits to locations in the majority of cases and that locations that share many common users visiting them frequently tend to be located close to each other. In addition, we use these traces to test the exibility of the framework, and we show that SPoT is able to accurately reproduce the mobility behavior observed in traces. Finally, relying on the Bernoulli assumption for arrival processes, we provide a throughout mathematical analysis of the controllability of the framework, deriving the conditions under which heavy-tailed and exponentially-tailed aggregate inter-contact times (often observed in real traces) emerge

    Spin-orbit interaction in InSb nanowires

    Get PDF
    We use magnetoconductance measurements in dual-gated InSb nanowire devices together with a theoretical analysis of weak antilocalization to accurately extract spin-orbit strength. In particular, we show that magnetoconductance in our three-dimensional wires is very different compared to wires in two-dimensional electron gases. We obtain a large Rashba spin-orbit strength of 0.5−1 eVA˚0.5 -1\,\text{eV\r{A}} corresponding to a spin-orbit energy of 0.25−1 meV0.25-1\,\text{meV}. These values underline the potential of InSb nanowires in the study of Majorana fermions in hybrid semiconductor-superconductor devices.Comment: Version as accepted for publication as a Rapid in Phys. Rev.

    Fractional diffusion emulates a human mobility network during a simulated disease outbreak

    Full text link
    From footpaths to flight routes, human mobility networks facilitate the spread of communicable diseases. Control and elimination efforts depend on characterizing these networks in terms of connections and flux rates of individuals between contact nodes. In some cases, transport can be parameterized with gravity-type models or approximated by a diffusive random walk. As a alternative, we have isolated intranational commercial air traffic as a case study for the utility of non-diffusive, heavy-tailed transport models. We implemented new stochastic simulations of a prototypical influenza-like infection, focusing on the dense, highly-connected United States air travel network. We show that mobility on this network can be described mainly by a power law, in agreement with previous studies. Remarkably, we find that the global evolution of an outbreak on this network is accurately reproduced by a two-parameter space-fractional diffusion equation, such that those parameters are determined by the air travel network.Comment: 26 pages, 4 figure

    On the properties of human mobility

    Get PDF
    The current age of increased people mobility calls for a better understanding of how people move: how many places does an individual commonly visit, what are the semantics of these places, and how do people get from one place to another. We show that the number of places visited by each person (Points of Interest - PoIs) is regulated by some properties that are statistically similar among individuals. Subsequently, we present a PoIs classification in terms of their relevance on a per-user basis. In addition to the PoIs relevance, we also investigate the variables that describe the travel rules among PoIs in particular, the spatial and temporal distance. As regards the latter, existing works on mobility are mainly based on spatial distance. Here we argue, rather, that for human mobility the temporal distance and the PoIs relevance are the major driving factors. Moreover, we study the semantic of PoIs. This is useful for deriving statistics on people's habits without breaking their privacy. With the support of different datasets, our paper provides an in-depth analysis of PoIs distribution and semantics; it also shows that our results hold independently of the nature of the dataset in use. We illustrate that our approach is able to effectively extract a rich set of features describing human mobility and we argue that this can be seminal to novel mobility research

    Extracting a Mobility Model from Real User Traces

    Get PDF
    Understanding user mobility is critical for simulations of mobile devices in a wireless network, but current mobility models often do not reflect real user movements. In this paper, we provide a foundation for such work by exploring mobility characteristics in traces of mobile users. We present a method to estimate the physical location of users from a large trace of mobile devices associating with access points in a wireless network. Using this method, we extracted tracks of always-on Wi-Fi devices from a 13-month trace. We discovered that the speed and pause time each follow a log-normal distribution and that the direction of movements closely reflects the direction of roads and walkways. Based on the extracted mobility characteristics, we developed a mobility model, focusing on movements among popular regions. Our validation shows that synthetic tracks match real tracks with a median relative error of 17%
    • …
    corecore