336 research outputs found

    Pulsating-campaigns of human prophylaxis driven by risk perception palliate oscillations of direct contact transmitted diseases

    Get PDF
    Human behavioral responses play an important role in the impact of disease outbreaks and yet they are often overlooked in epidemiological models. Understanding to what extent behavioral changes determine the outcome of spreading epidemics is essential to design effective intervention policies. Here we explore, analytically, the interplay between the personal decision to protect oneself from infection and the spreading of an epidemic. We do so by coupling a decision game based on the perceived risk of infection with a Susceptible-Infected-Susceptible model. Interestingly, we find that the simple decision on whether to protect oneself is enough to modify the course of the epidemics, by generating sustained steady oscillations in the prevalence. We deem these oscillations detrimental, and propose two intervention policies aimed at modifying behavioral patterns to help alleviate them. Surprisingly, we find that pulsating campaigns, compared to continuous ones, are more effective in diminishing such oscillations.Comment: 19 pages, 6 figure

    Spreading processes in Multilayer Networks

    Get PDF
    Several systems can be modeled as sets of interconnected networks or networks with multiple types of connections, here generally called multilayer networks. Spreading processes such as information propagation among users of an online social networks, or the diffusion of pathogens among individuals through their contact network, are fundamental phenomena occurring in these networks. However, while information diffusion in single networks has received considerable attention from various disciplines for over a decade, spreading processes in multilayer networks is still a young research area presenting many challenging research issues. In this paper we review the main models, results and applications of multilayer spreading processes and discuss some promising research directions.Comment: 21 pages, 3 figures, 4 table

    Co-evolution of Vaccination Behavior and Perceived Vaccination Risk can lead to a Stag-Hunt like Game

    Full text link
    Voluntary vaccination is effective to prevent infectious diseases from spreading. Both vaccination behavior and cognition of the vaccination risk play important roles in individual vaccination decision making. However, it is not clear how the co-evolution of the two shapes the population-wide vaccination behavior. We establish a coupled dynamics of epidemic, vaccination behavior and perceived vaccination risk with three different time scales. We assume that the increase of vaccination level inhibits the rise of perceived vaccination risk, and the increase of perceived vaccination risk inhibits the rise of vaccination level. It is shown that the resulting vaccination behavior is similar to the stag-hunt game, provided that the basic reproductive ratio is moderate and that the epidemic dynamics evolves fast. This is in contrast with the previous view that vaccination is a snowdrift like game. Furthermore, we find that epidemic breaks out repeatedly and eventually leads to vaccine scares if these three dynamics evolve on a similar time scale. And we propose some ways to promote vaccination behavior, such as controlling side-effect bias and perceived vaccination costs. Our work sheds light on epidemic control via vaccination by taking into account the co-evolutionary dynamics of cognition and behavior

    Mathematical modelling of Toxoplasma gondii transmission: A systematic review

    Get PDF
    Background: Toxoplasma gondii is a ubiquitous protozoan parasite that can infect virtually all warm-blooded animals. It is the causative agent of toxoplasmosis, a significant public health issue worldwide. Mathematical models are useful to study the transmission dynamics of T. gondii infection in different settings, and may be used to compare the effectiveness of prevention measures. Methods: To obtain an overview of existing mathematical models for transmission of T. gondii, a systematic review was undertaken. The review was conducted according to an a priori protocol and the results were reported according to the PRISMA guidelines. Specific search terms were developed and used in the search of three databases (Scopus, PubMed, and Embase). Results: In total, 484 unique records were retrieved from the systematic search. Among them, 15 studies that used mathematical models to study the transmission of T. gondii. These studies were categorized into four groups based on the primary aims: dynamics of transmission (n = 8), intervention (n = 5), spatial distribution (n = 1), and outbreak investigation (n = 1). Conclusions: Considering the high disease burden caused by T. gondii, the number of studies using mathematical models to understand the transmission dynamics of this parasite and to evaluate the effectiveness of intervention measures was only 15. This systematic review provides an overview of existing mathematical models and identifies the data gaps for model building. The results from this study can be helpful for further development of mathematical models and improved understanding of the transmission dynamics of T. gondii infection

    Epidemic processes in complex networks

    Get PDF
    In recent years the research community has accumulated overwhelming evidence for the emergence of complex and heterogeneous connectivity patterns in a wide range of biological and sociotechnical systems. The complex properties of real-world networks have a profound impact on the behavior of equilibrium and nonequilibrium phenomena occurring in various systems, and the study of epidemic spreading is central to our understanding of the unfolding of dynamical processes in complex networks. The theoretical analysis of epidemic spreading in heterogeneous networks requires the development of novel analytical frameworks, and it has produced results of conceptual and practical relevance. A coherent and comprehensive review of the vast research activity concerning epidemic processes is presented, detailing the successful theoretical approaches as well as making their limits and assumptions clear. Physicists, mathematicians, epidemiologists, computer, and social scientists share a common interest in studying epidemic spreading and rely on similar models for the description of the diffusion of pathogens, knowledge, and innovation. For this reason, while focusing on the main results and the paradigmatic models in infectious disease modeling, the major results concerning generalized social contagion processes are also presented. Finally, the research activity at the forefront in the study of epidemic spreading in coevolving, coupled, and time-varying networks is reported.Comment: 62 pages, 15 figures, final versio
    • …
    corecore