22,243 research outputs found

    A Dose of Reality: Overcoming Usability Challenges in VR Head-Mounted Displays

    Get PDF
    We identify usability challenges facing consumers adopting Virtual Reality (VR) head-mounted displays (HMDs) in a survey of 108 VR HMD users. Users reported significant issues in interacting with, and being aware of their real-world context when using a HMD. Building upon existing work on blending real and virtual environments, we performed three design studies to address these usability concerns. In a typing study, we show that augmenting VR with a view of reality significantly corrected the performance impairment of typing in VR. We then investigated how much reality should be incorporated and when, so as to preserve users’ sense of presence in VR. For interaction with objects and peripherals, we found that selectively presenting reality as users engaged with it was optimal in terms of performance and users’ sense of presence. Finally, we investigated how this selective, engagement-dependent approach could be applied in social environments, to support the user’s awareness of the proximity and presence of others

    Ten years Center for Immersive Visualizations - Past, Present, and Future

    Get PDF
    Virtual Reality (VR) can be found in many fields. A majority of the time this involves the use of Head-Mounted Displays (HMDs). Their alternatives, large-scale immersive 3D screens and CAVE systems, can also be found in research and offer researchers high visual quality and collaborative VR experiences. This report covers the operation and learnings from maintaining a visualization center with large-scale immersive installations over the course of ten years

    I Am The Passenger: How Visual Motion Cues Can Influence Sickness For In-Car VR

    Get PDF
    This paper explores the use of VR Head Mounted Displays (HMDs) in-car and in-motion for the first time. Immersive HMDs are becoming everyday consumer items and, as they offer new possibilities for entertainment and productivity, people will want to use them during travel in, for example, autonomous cars. However, their use is confounded by motion sickness caused in-part by the restricted visual perception of motion conflicting with physically perceived vehicle motion (accelerations/rotations detected by the vestibular system). Whilst VR HMDs restrict visual perception of motion, they could also render it virtually, potentially alleviating sensory conflict. To study this problem, we conducted the first on-road and in motion study to systematically investigate the effects of various visual presentations of the real-world motion of a car on the sickness and immersion of VR HMD wearing passengers. We established new baselines for VR in-car motion sickness, and found that there is no one best presentation with respect to balancing sickness and immersion. Instead, user preferences suggest different solutions are required for differently susceptible users to provide usable VR in-car. This work provides formative insights for VR designers and an entry point for further research into enabling use of VR HMDs, and the rich experiences they offer, when travelling

    Walking with head-mounted virtual and augmented reality devices : effects on position control and gait biomechanics

    Get PDF
    What was once a science fiction fantasy, virtual reality (VR) technology has evolved and come a long way. Together with augmented reality (AR) technology, these simulations of an alternative environment have been incorporated into rehabilitation treatments. The introduction of head-mounted displays has made VR/AR devices more intuitive and compact, and no longer limited to upper-limb rehabilitation. However, there is still limited evidence supporting the use of VR and AR technology during locomotion, especially regarding the safety and efficacy relating to walking biomechanics. Therefore, the objective of this study is to explore the limitations of such technology through gait analysis. In this study, thirteen participants walked on a treadmill in normal, virtual and augmented versions of the laboratory environment. A series of spatiotemporal parameters and lower-limb joint angles were compared between conditions. The center of pressure (CoP) ellipse area (95% confidence ellipse) was significantly different between conditions (p = 0.002). Pairwise comparisons indicated a significantly greater CoP ellipse area for both the AR (p = 0.002) and VR (p = 0.005) conditions when compared to the normal laboratory condition. Furthermore, there was a significant difference in stride length (p0.082), except for maximum ankle plantarflexion (p = 0.001). These differences in CoP ellipse area indicate that users of head-mounted VR/AR devices had difficulty maintaining a stable position on the treadmill. Also, differences in the gait parameters suggest that users walked with an unusual gait pattern which could potentially affect the effectiveness of gait rehabilitation treatments. Based on these results, position guidance in the form of feedback and the use of specialized treadmills should be considered when using head-mounted VR/AR devices

    Towards Secure and Usable Authentication for Augmented and Virtual Reality Head-Mounted Displays

    Get PDF
    Immersive technologies, including augmented and virtual reality (AR & VR) devices, have enhanced digital communication along with a considerable increase in digital threats. Thus, authentication becomes critical in AR & VR technology, particularly in shared spaces. In this paper, we propose applying the ZeTA protocol that allows secure authentication even in shared spaces for the AR & VR context. We explain how it can be used with the available interaction methods provided by Head-Mounted Displays. In future work, our research goal is to evaluate different designs of ZeTA (e.g., interaction modes) concerning their usability and users\u27 risk perception regarding their security - while using a cross-cultural approach

    Towards Secure and Usable Authentication for Augmented and Virtual Reality Head-Mounted Displays

    Get PDF
    Immersive technologies, including augmented and virtual reality (AR & VR) devices, have enhanced digital communication along with a considerable increase in digital threats. Thus, authentication becomes critical in AR & VR technology, particularly in shared spaces. In this paper, we propose applying the ZeTA protocol that allows secure authentication even in shared spaces for the AR & VR context. We explain how it can be used with the available interaction methods provided by Head-Mounted Displays. In future work, our research goal is to evaluate different designs of ZeTA (e.g., interaction modes) concerning their usability and users' risk perception regarding their security - while using a cross-cultural approach

    Individual differences in embodied distance estimation in virtual reality

    Get PDF
    There are important individual differences when experiencing VR setups. We ran a study with 20 participants who got a scale-matched avatar and were asked to blind-walk to a VR target placed 2.5 meters away. In such setups, people typically underestimate distances by approximately 10% when virtual environments are viewed through head mounted displays. Consistent with previous studies we found that the underestimation was significantly reduced the more embodied the participants were. However, not all participants developed the same level of embodiment when exposed to the exact same conditions

    The use of virtual reality head-mounted displays within applied sport psychology

    Get PDF
    This is the author accepted manuscript. The final version is available from Taylor & Francis (Routledge) via the DOI in this record.Virtual reality (VR) technology has been employed within several domains such as medicine, education, and the military. Nonetheless, there is limited research examining how VR can supplement applied sport psychology practice. This article provides the reader with an understanding of key components and concepts associated with VR head-mounted displays (HMDs). Subsequently, a range of possible applications within applied sport psychology are discussed, such as the training of perceptual-cognitive skills, relaxation strategies, and injury rehabilitation. Thereafter, the practicalities of using VR HMDs are outlined, and recommendations are provided to applied sport psychology practitioners wishing to embed this technology within their practice

    Toward Optimized VR/AR Ergonomics: Modeling and Predicting User Neck Muscle Contraction

    Full text link
    Ergonomic efficiency is essential to the mass and prolonged adoption of VR/AR experiences. While VR/AR head-mounted displays unlock users' natural wide-range head movements during viewing, their neck muscle comfort is inevitably compromised by the added hardware weight. Unfortunately, little quantitative knowledge for understanding and addressing such an issue is available so far. Leveraging electromyography devices, we measure, model, and predict VR users' neck muscle contraction levels (MCL) while they move their heads to interact with the virtual environment. Specifically, by learning from collected physiological data, we develop a bio-physically inspired computational model to predict neck MCL under diverse head kinematic states. Beyond quantifying the cumulative MCL of completed head movements, our model can also predict potential MCL requirements with target head poses only. A series of objective evaluations and user studies demonstrate its prediction accuracy and generality, as well as its ability in reducing users' neck discomfort by optimizing the layout of visual targets. We hope this research will motivate new ergonomic-centered designs for VR/AR and interactive graphics applications. Source code is released at: https://github.com/NYU-ICL/xr-ergonomics-neck-comfort.Comment: ACM SIGGRAPH 2023 Conference Proceeding
    • …
    corecore